
Oracle® Applications
Supportability Guide
Release 11i
Part No. B13548-02

July 2006

Oracle Applications Supportability Guide, Release 11i

Part No. B13548-02

Copyright © 2002, 2006, Oracle. All rights reserved.

Primary Author: Mildred Wang

Contributing Author: Kunal Kapur, Sandeep Khemani, Mike Xu

Contributor: Jim Benge, George Buzsaki, Michele Casalgrandi, Pranab Pradhan, Sowmya
Subramanian, Susan Stratton, Suchi Upadhyayula

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software–Restricted Rights
(June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any
third party.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments

Preface

1 Oracle Diagnostics Overview
Introduction . 1-1
Target Audiences . 1-1
Terminology . 1-2
Architecture . 1-2
Supported Features . 1-3
User Interfaces . 1-4

2 Developing Diagnostic Tests
Test Development Overview . 2-1
Diagnostic Test Categories . 2-1
Developing Java Diagnostic Tests . 2-2

Preliminary Requirements for Java Tests. 2-2
Java Test Properties . 2-2
Java Test Execution . 2-4
Java Test Reporting . 2-4
Java Diagnostic Test Sample Code . 2-5
Report Formatting Library. 2-7

Pipelining Dependencies. 2-19
Pipelining PL/SQL Scripts . 2-20
Seamless Pipelining between Diagnostics Java and PL/SQL Scripts 2-22
Developing PL/SQL Test Cases . 2-23

PL/SQL Package Test Case APIs . 2-24
PL/SQL Utility Packages . 2-32
PL/SQL Diagnostic Test Sample Code . 2-32

Declarative Diagnostics . 2-35
Structure of a Declarative Diagnostic Test . 2-35
Sub-test Types, Metadata Needed, and Use Case Examples 2-35
Logical Operators for Comparison . 2-39

Integrating LOVs With Diagnostics . 2-39
Implementing an LOV . 2-39

iii

LOV Provider Sample Code . 2-41
Incorporating LOVs in Diagnostic Test Cases 2-43
Default LOVs . 2-44
PL/SQL LOVs . 2-44

Oracle Applications Framework Support. 2-45
Sample Code . 2-46

Instantiation of Diagnostic User Context Within Diagnostic Test Cases 2-46

3 Diagnostic Security
Overview . 3-1
Key Concepts . 3-1

Test Group Sensitivity . 3-1
Diagnostic Roles . 3-1
Underlying Security Infrastructure . 3-3

Security Administration . 3-3
Securing Test Groups . 3-3
Assigning Diagnostic Roles to Responsibilities . 3-4

Session Creation / Switching User Context in Test Cases 3-4

4 Diagnostics Result Reporting
Overview . 4-1
Database Failover . 4-1
Accessing Result Logs . 4-1
Purging Result Logs . 4-2

Scheduling Routine Purging . 4-2
Historical Logs: LogViewer . 4-2
Microsoft Excel Reporting for Diagnostics PL/SQL Test Results 4-3

5 Launching Oracle Diagnostics
Overview . 5-1
Standalone Diagnostics . 5-1

Access . 5-1
Features. 5-2
Bookmarking Pages in the Diagnostics UI . 5-3

CRM System Administrator Console . 5-3
Features. 5-3

Oracle Applications Manager . 5-3
Finding Oracle Diagnostics in OAM . 5-3
Diagnostics Test Summary. 5-3
Refreshing the Summary Data . 5-4
Diagnostic Test Details . 5-4
Using the Support Cart . 5-4
Launching Oracle Diagnostics from OAM . 5-4

Command-line Console . 5-5

iv

Scheduling Batch Diagnostics . 5-5

6 Logging Framework Overview
Overview . 6-1
Target Audience . 6-1
Key Features . 6-1
Terminology . 6-2
Logging Configuration Parameters . 6-3

Overview . 6-3
AFLOG_ENABLED . 6-4
AFLOG_LEVEL . 6-5
AFLOG_MODULE . 6-7
AFLOG_FILENAME . 6-7
AFLOG_ECHO . 6-8

7 How to Congure Logging
Using Middle-tier Properties to Configure Logging 7-1

Using Java. 7-1
Using C . 7-2

Using Database Profile Options to Configure Logging 7-2
Using Logging to Screen . 7-3

Enabling Logging to Screen in Oracle Application Framework Pages 7-3
Enabling Logging to Screen in CRM Technology Foundation Pages 7-3

Startup Behavior . 7-4

8 Logging Guidelines for System Administrators
Overview . 8-1
Recommended Default Site-Level Settings . 8-1
Recommended Settings for Debugging . 8-1

Using Logging to Screen . 8-1
Pinpointing an Error to a Specific User . 8-2
For High Volumes . 8-2

Updating Configuration Properties . 8-2
How to Completely Disable Logging . 8-3
Purging Log Messages . 8-3

Using a Concurrent Program . 8-3
Using Oracle Applications Manager . 8-3
Using the Oracle CRM System Administrator Console 8-3
Using PL/SQL . 8-3

Viewing Log Messages . 8-4

9 Logging Guidelines for Developers
Overview . 9-1
APIs . 9-1

v

Handling Errors . 9-1
Performance Standards . 9-2
Module Source . 9-3

Module Name Standards . 9-5
Module Name Examples . 9-5

Severities . 9-6
UNEXPECTED . 9-6
ERROR . 9-6
EXCEPTION. 9-7
EVENT . 9-7
PROCEDURE . 9-7
STATEMENT . 9-8

Large Text and Binary Message Attachments . 9-8
Automatic Logging and Alerting for Seeded Message Dictionary Messages 9-10
General Logging Tips . 9-10
How to Log from Java . 9-10

Core AppsLog . 9-10
OAPageContext and OADBTransaction APIs 9-11
CRM Technology Foundation APIs . 9-12

How to Log from PL/SQL . 9-13
API Description . 9-14
Example . 9-14

How to Log from C . 9-15
How to Log in Concurrent Programs. 9-16

Debug and Error Logging . 9-16
Request Log . 9-17
Output File . 9-17

How to Raise System Alerts . 9-17
Guidelines for Defining System Alerts . 9-19

A PL/SQL Helper Packages
Overview . A-1
Package JTF_DIAGNOSTIC_ADAPTUTIL. A-1
Package JTF_DIAGNOSTIC_COREAPI . A-5

B SQL Trace Options
SQL Trace Options . B-1

Index

vi

Send Us Your Comments

Oracle Applications Supportability Guide, Release 11i
Part No. B13548-02

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Applications Release
Online Documentation CD available on Oracle MetaLink and www.oracle.com. It contains the most
current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local
office and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web
site at www.oracle.com.

vii

Preface

Intended Audience
Welcome to Release 11i of the Oracle Applications Supportability Guide.

This guide assumes you have a working knowledge of the principles and customary
practices of your business area. If you have never used Oracle Applications we suggest
you attend one or more of the Oracle Applications System Administration training
classes available through Oracle University. (See Other Information Sources for more
information about Oracle training.)

This guide also assumes you are familiar with the Oracle Applications graphical user
interface. To learn more about the Oracle Applications graphical user interface, read the
Oracle Applications User’s Guide.

See Other Information Sources for more information about Oracle Applications product
information.

See Related Information Sources on page x for more Oracle Applications product
information.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY support,
call 800.446.2398.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation accessible,
with good usability, to the disabled community. To that end, our documentation
includes features that make information available to users of assistive technology.
This documentation is available in HTML format, and contains markup to facilitate
access by the disabled community. Accessibility standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/ .

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise
empty line; however, some screen readers may not always read a line of text that consists
solely of a bracket or brace.

ix

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 Oracle Diagnostics Overview
2 Developing Diagnostic Tests
3 Diagnostic Security
4 Diagnostics Result Reporting
5 Launching Oracle Diagnostics
6 Logging Framework Overview
7 How to Congure Logging
8 Logging Guidelines for System Administrators
9 Logging Guidelines for Developers
A PL/SQL Helper Packages
B SQL Trace Options

Related Information Sources
You can choose from many sources of information, including online
documentation, training, and support services to increase your knowledge and
understanding of Oracle Applications system administration.

If this guide refers you to other Oracle Applications documentation, use only the Release
11i versions of those guides.

Online Documentation
All Oracle Applications documentation is available online (HTML or PDF).

• PDF Documentation - See the Oracle Applications Documentation Library CD
for current PDF documentation for your product with each release. The Oracle
Applications Documentation Library is also available on OracleMetaLink and is
updated frequently.

• Online Help - Online help patches (HTML) are available on OracleMetaLink.

• About Documents - Refer to the About document for the mini-pack or family pack
that you have installed to learn about feature updates, installation information, and
new documentation or documentation patches that you can download. About
documents are available on OracleMetaLink.

Related Guides
You can read the guides online by choosing Library from the expandable menu on your
HTML help window, by reading from the Oracle Applications Documentation Library
CD included in your media pack, or by using a Web browser with a URL that your
system administrator provides.

If you require printed guides, you can purchase them from the Oracle Store at
http://oraclestore.oracle.com.

x

Guides Related to All Products
Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate using the
graphical user interface (GUI) available with this release of Oracle Advanced Product
Catalog (and any other Oracle Applications products). This guide also includes
information on setting user profiles, as well as running and reviewing reports and
concurrent processes.

You can access this user’s guide online by choosing ”Getting Started with Oracle
Applications” from any Oracle Applications help file.

Installation and System Administration
Oracle Applications Concepts

This guide provides an introduction to the concepts, features, technology
stack, architecture, and terminology for Oracle Applications Release 11i. It provides a
useful first book to read before an installation of Oracle Applications. This guide also
introduces the concepts behind Applications-wide features such as Business Intelligence
(BIS), languages and character sets, and Self-Service Web Applications.

Installing Oracle Applications

This guide provides instructions for managing the installation of Oracle Applications
products. In Release 11i, much of the installation process is handled using Oracle Rapid
Install, which minimizes the time to install Oracle Applications, the Oracle8 technology
stack, and the Oracle8i Server technology stack by automating many of the required
steps. This guide contains instructions for using Oracle Rapid Install and lists the tasks
you need to perform to finish your installation. You should use this guide in conjunction
with individual product user guides and implementation guides.

Upgrading Oracle Applications

Refer to this guide if you are upgrading your Oracle Applications Release 10.7 or
Release 11.0 products to Release 11i. This guide describes the upgrade process and
lists database and product-specific upgrade tasks. You must be either at Release 10.7
(NCA, SmartClient, or character mode) or Release 11.0, to upgrade to Release 11i. You
cannot upgrade to Release 11i directly from releases prior to 10.7.

Maintaining Oracle Applications

Use this guide to help you run the various AD utilities, such as AutoUpgrade, Auto
Patch, AD Administration, AD Controller, AD Relink, License Manager, and others. It
contains how-to steps, screenshots, and other information that you need to run the AD
utilities. This guide also provides information on maintaining the Oracle Applications
file system and database.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle Applications
System Administrator. It contains information on how to define security, customize
menus and online help, and manage concurrent processing.

Oracle Alert User’s Guide

This guide explains how to define periodic and event alerts to monitor the status of
your Oracle Applications data.

Oracle Applications Developer’s Guide

xi

This guide contains the coding standards followed by the Oracle Applications
development staff. It describes the Oracle Application Object Library components
needed to implement the Oracle Applications user interface described in the Oracle
Applications User Interface Standards for Forms-Based Products. It also provides information
to help you build your custom Oracle Forms Developer forms so that they integrate
with Oracle Applications.

Oracle Applications User Interface Standards for Forms-Based Products

This guide contains the user interface (UI) standards followed by the Oracle Applications
development staff. It describes the UI for the Oracle Applications products and how to
apply this UI to the design of an application built by using Oracle Forms.

Other Implementation Documentation
Oracle Applications Product Update Notes

Use this guide as a reference for upgrading an installation of Oracle Applications. It
provides a history of the changes to individual Oracle Applications products between
Release 11.0 and Release 11i. It includes new features, enhancements, and changes made
to database objects, profile options, and seed data for this interval.

Multiple Reporting Currencies in Oracle Applications

If you use the Multiple Reporting Currencies feature to record transactions in more than
one currency, use this manual before implementing Oracle Applications. This manual
details additional steps and setup considerations for implementing Oracle Applications
with this feature.

Multiple Organizations in Oracle Applications

This guide describes how to set up and use Oracle Applications’ Multiple Organization
support feature, so you can define and support different organization structures when
running a single installation of Oracle Applications.

Oracle Workflow Administrator’s Guide

This guide explains how to complete the setup steps necessary for any Oracle
Applications product that includes workflow-enabled processes, as well as how to
monitor the progress of runtime workflow processes.

Oracle Workflow Developer’s Guide

This guide explains how to define new workflow business processes and customize
existing Oracle Applications-embedded workflow processes. It also describes how to
define and customize business events and event subscriptions.

Oracle Workflow User’s Guide

This guide describes how Oracle Applications users can view and respond to workflow
notifications and monitor the progress of their workflow processes.

Oracle Workflow API Reference

This guide describes the APIs provided for developers and administrators to access
Oracle Workflow.

Oracle eTechnical Reference Manuals

Each eTechnical Reference Manual (eTRM) contains database diagrams and a detailed
description of database tables, forms, reports, and programs for a specific Oracle

xii

Applications product. This information helps you convert data from your existing
applications, integrate Oracle Applications data with non-Oracle applications, and
write custom reports for Oracle Applications products. Oracle eTRM is available on
OracleMetaLink.

Training and Support
Training

Oracle offers a complete set of training courses to help you and your staff master
Oracle Applications and reach full productivity quickly. These courses are organized
into functional learning paths, so you take only those courses appropriate to your job
or area of responsibility.

You have a choice of educational environments. You can attend courses offered by
Oracle University at any one of our many Education Centers, you can arrange for our
trainers to teach at your facility, or you can use Oracle Learning Network (OLN), Oracle
University’s online education utility. In addition, Oracle training professionals can tailor
standard courses or develop custom courses to meet your needs. For example, you
may want to use your organization’s structure, terminology, and data as examples in a
customized training session delivered at your own facility.

Support

From on-site support to central support, our team of experienced professionals provides
the help and information you need to keep Oracle Applications working for you. This
team includes your Technical Representative, Account Manager, and Oracle’s large staff
of consultants and support specialists with expertise in your business area, managing an
Oracle Database, and your hardware and software environment.

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data Browser,
database triggers, or any other tool to modify Oracle Applications data unless otherwise
instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as SQL*Plus
to modify Oracle Applications data, you risk destroying the integrity of your data and
you lose the ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using an
Oracle Applications form can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a row
in one table without making corresponding changes in related tables. If your tables get
out of synchronization with each other, you risk retrieving erroneous information and
you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps track of
who changes information. If you enter information into database tables using database
tools, you may store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools do not keep a
record of changes.

xiii

1
Oracle Diagnostics Overview

Introduction
Oracle Diagnostics improves the supportability of Oracle Applications by enabling the
creation and execution of diagnostic tests. With Oracle Diagnostics, you can accomplish
the following:

• Execute tests to prevent and troubleshoot problems.

• Be alerted automatically when problems occur.

• Find instructions to help you resolve problems on your own.

• Easily share detailed information about a problem with Oracle Support.

• Create your own tests to enhance the supportability of your system.

This chapter provides a high-level overview of the architecture, terminology, and
features of Oracle Diagnostics.

Target Audiences
The target audiences for this manual are as follows:

System Administrators
As a system administrator, running diagnostic tests allows you to check the health of
your system. You can use diagnostic tests to identify and resolve problems related to:

• Environment

• Post-installation setup

• Customization

• Any other functional problems

If you cannot successfully resolve the problem on your own, you can send the
information generated by the tests to Oracle Support.

Implementation Engineers
When performing implementations, you are advised to run diagnostics after every
installation or patching process to confirm that the environment is set up correctly and
there are no outstanding issues to be resolved.

Oracle Diagnostics Overview 1-1

Application Developers and Consultants
You can use this manual to learn how to extend the diagnostic tests provided by
Oracle. By creating your own diagnostic tests, you can diagnose issues specific to your
implementation and diagnose any customizations or extensions that may exist.

Terminology

Applications
Refers specifically to the applications in the FND_APPLICATION table.

Groups
An ordered set of one or more related test cases. Every application has one or more
groups.

Diagnostic Test
A diagnostic test case can be written in Java, written in PL/SQL, or created
declaratively. It checks the correct behavior of a particular feature or business function.

Prerequisites
Each group can have one or more groups as prerequisites. The existence of a prerequisite
implies that the current group will not execute correctly if the prerequisite group has
not executed successfully.

Basic Mode
There are two modes associated with diagnostic tests. When writing tests, a developer
can set up a test to be executable in basic mode, advanced mode (see below), or both
modes. In basic mode, a test is executed with no user interaction, because the test either
requires no input values or has a pre-configured set of input values.

Advanced Mode
In advanced mode, users can supply specific input values for execution of a diagnostic
test.

Architecture
Oracle Diagnostics provides a framework to integrate diagnostic test cases and automate
the execution of these test cases. It also provides a mechanism to write and run unit
test cases.

Oracle Diagnostics is robust enough to function even when the environment and
application are not set up properly. A set of "SYSTEM_TESTS" makes sure that the basic
environment and installation are up and running. Information about these test cases
is stored in a system resource file that can be read even when the application database
is down. Metadata about diagnostic tests is stored in diagnostic-specific tables in the
application schema.

Oracle Diagnostics can be launched from Oracle Applications Manager as well as the
CRM System Administrator Console. If for some reason Oracle Applications Manager
and/or the CRM System Administrator Console is not working, you can launch

1-2 Oracle Applications Supportability Guide

Oracle Diagnostics through the following page: jtfqalgn.htm. When launched in this
manner, the Oracle Diagnostics will attempt a guest user login. If this does not succeed, it
will run in noSessionmode. In this mode, only tests under "HTML Platform" and tests
with low sensitivity security levels can be executed. The purpose of this mode is to help
troubleshoot scenarios when Oracle Applications are not available.

Supported Features
Oracle Diagnostics supports the following features:

• Diagnostic tests that can be written in either Java or PL/SQL.

• Diagnostic tests can be written declaratively (without coding) through the
Diagnostics UI.

• A user-friendly Web-based user interface.

• Metadata about diagnostic tests that is stored in diagnostic schema:

• Diagnostic tests are grouped together in logical groups. Test groups belong to a
particular application.

• Multiple sets of input values for diagnostic tests can be stored in the database
and also shipped as preseeded data.

• Diagnostic test results are persisted in the database, and a report viewer is available
through the Web-based UI for viewing historical reports.

• Each diagnostic test can be an individual test case, or behave as a container that is
made up of a set of individual test cases (called dependencies).

• Java-based diagnostic tests can be pipelined to pass output parameters from one test
to another test within a container test.

• Parameters can be defined to be secure. This ensures that the parameter values are
never displayed in visible text to the user.

• Parameters can be associated with LOVs.

• Oracle Diagnostics has a built-in notion of security. It checks the responsibility list
of the user and determines if any of the Diagnostic Roles are tied to the user’s
responsibilities. For details, see Diagnostic Security, page 3-1.

• Diagnostic Roles determine the set of operations that can be performed on test
groups, based on the sensitivity of the test group. The Diagnostic Roles available
are as follows:

• Super User: For all test groups of all registered applications, a Super User can
execute tests, perform configuration, view reports, and set up security.

• Application Super User: For all test groups of a given application, an Application
Super User can execute tests, perform configuration, view reports, and set
up security. For test groups of medium or low sensitivity belonging to other
applications, an Application Super User can execute tests, configure test
inputs, and view reports.

• End User: For test groups of low sensitivity belonging to any application, an
End User can execute tests and configure test inputs.

• Diagnostic test results can be e-mailed.

Oracle Diagnostics Overview 1-3

User Interfaces
Oracle Diagnostics has a Web-based user interface and a command-line user
interface. You can:

• Execute tests, both basic and advanced.

• Register new applications.

• Register new groups.

• Modify or delete existing groups and their attributes such as group name, group
sequence, and group prerequisites.

• Register new test cases in PL/SQL and Java.

• Modify or delete existing test cases.

• Set up one or more set of default values for a test.

Interfaces
The following is a list of the ways in which Oracle Diagnostics can be accessed. For
further information, see Launching Oracle Diagnostics, page 5-1.

• http://<domain_name>/OA_HTML/jtfqalgn.htm

• http://<domain_name>/OA_HTML/jtflogin.jsp - This leads to the CRM System
Administrator Console. After logging in, click the Diagnostics tab to launch the
Oracle Diagnostics UI.

• Oracle Applications Manager - Diagnostics can be executed through Oracle
Applications Manager (OAM) as of Release 11.5.9. After opening OAM to the
Applications Dashboard, click the Diagnostics tab to see statistics and log data. The
complete Oracle Diagnostics UI can be launched by clicking the Launch Diagnostic
Tests button.

1-4 Oracle Applications Supportability Guide

2
Developing Diagnostic Tests

Test Development Overview
This section describes how to develop diagnostic tests. Diagnostic tests can be written in
Java or PL/SQL. Regardless of the test type, designing a useful test case should include
the following steps:

1. Determine what to diagnose.

2. Determine what information is needed to execute the test (the input parameters).

3. Determine the core code paths to test.

4. Determine the different error cases that this test can expose.

5. Determine how to resolve the error scenarios (fix information).

6. Implement the test.

7. For security purposes, determine the test sensitivity level. For details, see Diagnostic
Security, page 3-1.

The following sections describe the different types of test cases, and how to write test
cases in Java and PL/SQL.

Diagnostic Test Categories
Ideally, each product or project should have diagnostic tests that cover each of the
following categories:

Environmental Problems
This category includes tests that check whether or not a given version of a certain
technology is present. For example, CRM Technology Foundation (JTT) checks the
versions of the JDK and JDBC drivers. Similarly, if your product requires a specific
workflow engine version, that test would belong in this category.

Installation Problems
This category includes tests that check if the installation has completed successfully. For
example, you could write tests that check if the –D parameters that the application
needs are configured correctly. You could also write tests that check if the servlets that
the application needs have been installed.

Developing Diagnostic Tests 2-1

Postinstallation and Setup Problems
This category includes tests regarding application post-installation steps. For
example, you can test if the guest user has been set up properly.

Seed Data Issues
Seed data often becomes corrupted during patching. Tests in this category check that the
application seed data is present and valid.

Customization Issues
If your application supports customer-site customizations, you should write tests to
check the validity of all possible customizations.

Common Functional Issues
This category includes tests that address problems resulting from incorrect functional
setups. For example, a task may not be assigned to a field service representative if the
dispatch type is not set correctly. Thus you would write a test to check the dispatch type.

Developing Java Diagnostic Tests
This section describes how to develop diagnostic test cases in Java.

Preliminary Requirements for Java Tests
All Java diagnostic test cases must do the following:

• Extend oracle.apps.jtf.regress.qatool.QATestImpl.

• Have a no argument constructor.

• Call "super()" in the first line of the constructor.

Java Test Properties
Set up the following test properties as described. Typically they are set up in the test
constructor.

• String testName

The name of the test, which appears to the end user in the UI. It is inherited and
should be set in the constructor.

• String testDescription

Tells the end user the purpose of the test. It is inherited and should be set in the
constructor.

• String testedComponentName

The logical product component which this test is testing. It will be seen by end
users. It is inherited and should be set in the constructor.

• Integer mode

This property can be set to one of three values:

• QATestInterface.BASIC_MODE

2-2 Oracle Applications Supportability Guide

The test is run with minimal user interaction and as part of the group it
belongs to. If the test requires inputs, then the values will be obtained from
preconfigured values.

• QATestInterface.ADV_MODE

The test can only be run individually. Typically tests that are used for probing
the system for specific input values fall in this category. Inputs are inserted by
the end user when the test is invoked.

• QATestInterface.BOTH_MODE

The test can be executed in either basic or advanced mode. Most tests fall into
this category.

• version.setClass(QATestImpl test)

The version object is inherited and already instantiated. Calling this method on the
object sets the RCS_ID of this test in the version object.

• version.addClassName(String fullName)

This method sets up the version information of the core classes that the test
diagnoses. Oracle Diagnostics implicitly adds the class names and their versions
(RCS_ID) to the diagnostic report generated when a test is run. This information is
useful when diagnosing problems on a customer instance.

• (Optional) void addInput(QATestInput input)

Calling this API in the constructor adds a single input parameter to the test. Call
this API once for each of the inputs that the test needs. Inputs can be of three
types: normal (displayed as clear text), secure (not displayed as clear text), or
LOV (value from a list of values). Parameters are wrapped by a QATestInput
object. Details on how to implement an LOV input can be found in Integrating
LOVs With Diagnostics, page 2-39.

Note: For test cases that need to start a user session, see Diagnostic Security, page
3-1. This is important because using passwords as input parameters is highly
discouraged.

• (Optional) String[] dependentClassNames

Tests can specify child tests that are to be executed after this test. The children should
also be well-formed Java diagnostic test cases. This variable can be set to a String
array of the fully qualified class names of the children.

• (Optional) boolean isDependencyPipelined

If set to true, it specifies that this test and its dependencies should be run with
chaining of input values. Most tests do not need this feature, thus this variable is set
to false by default. For more details about pipelining dependencies, see Pipelining
Dependencies, page 2-19.

• (Optional) boolean needNewRequest()

The only test property that is not specified in the constructor. Instead, if the test
needs to be executed with a new HttpServletRequest and HttpServletResponse
object, then the test should overload this method and return true. Setting this to true
implies an extra round trip between the server and the client. Tests that need to push
cookies onto the client may need this feature. However, most tests do not, and do
not have to overload the method.

Developing Diagnostic Tests 2-3

Java Test Execution
The execution logic is written in one of two versions of the runTest method. Both
must be implemented by the test case. Two signatures of the runTest method exist, in
order to support execution of the test in the context of a servlet and in a standalone
command-line mode. Most diagnostic tests are executed through the Web-based UI as a
servlet. Returning true signals success; returning false signals failure. The logic written
in the runTest methods is executed in its own thread. Tests that need a framework
session should start one at the beginning of the runTest and should be sure to end the
session before the runTest method returns.

• boolean runTest()

Is called if the test case is executed in a non-JSP environment and therefore
does not take in the HttpServletRequest and HttpServletResponse. Returns true
for success, false for failure. For tests that do not require the request/response
objects, implement all test logic here, and have the other runTest delegate the call to
this runTest.

• boolean runTest(HttpServletRequest request, HttpServletResponse response)

Is called if the test case is executed in a JSP environment. Returns true for
success, false for failure.

• (Optional) Object getInputValue(String inputName)

Is called at the beginning of the runTest method to retrieve input values seeded in
the database (if in basic mode) or by the user (if in advanced mode). The object type
returned is dependent on the input type:

• String if the input was type String, Secure String, or LOV.

• Integer if the input was type Integer.

Java Test Reporting
The following reporting APIs are called after the runTest has completed.

• String getReport()

Should give detailed information about the test execution, and will be displayed to
the end user. For example, in the JTF Menu test, we render the given user’s menu
tree. This is displayed regardless of whether the test succeeds or fails. If HTML tags
are involved in the formatting, then the returned string should begin with "@html ".

• String getError()

If the test fails, then this should give the end user details about the failure and its
cause. If HTML tags are involved in the formatting, then the returned string should
begin with "@html ".

• String getFixInfo()

If the test fails, then this should give information to the end user about how to
resolve the error. If HTML tags are involved in the formatting, then the returned
string should begin with "@html ".

• (Optional) boolean isWarning()

If returns true, then tells framework to interpret success as status "Success with
Warnings". The test result reflects this status to the end user, prompting them to
view the report. This is not be called if the test is a failure.

2-4 Oracle Applications Supportability Guide

• (Optional) boolean isFatal()

If returns true, tells the framework to interpret a failure as a "Severe Error", in which
case no other execution will follow this test.

• (Optional) Hashtable getOutputValues()

If this test is part of a dependency pipeline, then this will be called to get String
name-value pairs to be passed as inputs to the next test. These pairs are added to
initial inputs, and inputs having the same name are overridden.

You can use oracle.apps.jtf.regress.qatool.testcase.SampleTest as a template to develop
your test cases.

Java Diagnostic Test Sample Code
package oracle.apps.jtf.regress.qatool.testcase;

/* These two imports are neccessary **/
import oracle.apps.jtf.regress.qatool.*;
import javax.servlet.http.*;

import java.util.*;

public class SampleTest extends QATestImpl {

/* Standard RCS_ID needed by all files */
public static final String RCS_ID = "$Header$";

public SampleTest() {
super(); /* call the default constructor */

/* Set test information */
testName = “Sample”;
testDesc = “A template for developers to use when writing test

cases”;
componentName = “Diagnostic Framework”;
mode = QATestInterface.BOTH_MODE; //or BASIC_MODE, ADVANCED_MO

DE

/* Set version information. */
version.setClass(this); // Set the version of myself

/* Add version information of all the application classes you
are testing */

version.addClassName("oracle.apps.jtf.menu.Menu");
version.addClassName("oracle.apps.jtf.region.Region");

/* Dependency Classes if any needs to be set up */
/* If this test is made up of other test classes, then add dep

endent class names here */
dependentClassNames = dependencies;

/* Indicate if dependent classes should be pipelined */
/* i.e., outputs from one test goes as inputs into the next te

st */
isDependencyPipelined = true;

Developing Diagnostic Tests 2-5

/* Define parameter list (if any) used by runTest(..) method
*/

/* End users will be able to set up values for this parameter
list through the Admin UI */

/* You can specify if the input is secure - i.e., should not
be displayed in clear text */

addInput(new QATestInput(“username”, “SYSADMIN”));
// default: not secure

addInput(new QATestInput(“resp ID”, new RespLovImpl(), “2184
1”)); //lov enabled input. See the “Lov Integration with Diagnost
ics” section for more detailed information.
}
/*** There are methods you HAVE to implement ***/

public boolean runTest()
{

/ * This method is used when tests run through command-line.
* If this test is only run in JSP mode, then simply return f

alse */
return false; // Fail!

}

public boolean runTest(HttpServletRequest request, HttpServletRe
sponse response)
{

/* this method is used when tests run through JSP mode.
* Implement what the test actually does */

}

/**
* Return the error that runTest(..) encountered
**/
public String getError() {
return "TestException: Sample Test failed: Missing -D paramete

r ";
}

/**
* Return the fix (if any) for this error
**/
public String getFixInfo() {
return "Make sure you pass the -D parameter to the Jserv";

}

/**
* Should other tests be run, given that this test failed!
**/
public boolean isFatal() {
return false; // not fatal

}

/* If there are dependent classes, state them here */
private static final String[] dependencies =

{"oracle.apps.jtf.regress.qatool.testcase.SetCook
ieTest",

"oracle.apps.jtf.regress.qatool.testcase.GetCook
ieTest"};
}

2-6 Oracle Applications Supportability Guide

Report Formatting Library
A report formatting library is available to teams who want to:

• Simplify report generation.

• Have a consistent look and feel across different test reports.

• Intelligently generate HTML or text based reports.

The test case must instantiate a Report object using the createReportFormatter API that
is defined in the QATestImpl.java base class. This method will return an object that
implements the Report interface. Depending on the context of the test execution, this
object will generate a report in either HTML or text.

The test case constructs the test report by populating the Report object with the correct
contents. The following are descriptions of selected key methods, to demonstrate how
the Report object is used.

Example Methods
beginSection(String sectionName, String sectionDescription)
For a top-level section (that is, one that has no non-ended beginSections prior to it), this
will render a quicklink at the top of the report for easy navigation. All other formatting
commands will be indented under the section until the section is ended. It is possible to
create sub-sections by nesting beginSections. However, quick-links will not be generated
for sub-sections.

endSection()
Ends the last beginSection.

printError(String errorMessage, String xInformation)
Adds an error message to the report, along with a message on how the customer can
resolve the error. If this error message occurs within a section, then the quick-link will be
rendered to signal that an error occurred within the section.

printWarning(String errorMessage, String xInformation)
Behaves like printError, except it will signal to the user that it is only a warning. The
section’s quicklink will be rendered as in printError.

println(String output)
Adds a string to the section with a new line. Methods are also available to print Java
primitives.

printTable(String title, String summary, String[] headers, String[][] values)
Renders a table of information. Column titles are supplied by "headers" and table values
are specified by "values".

String formatNoteLink(String name, String ID)
Creates a link to an OracleMetaLink note, where "name" is the displayed link name and
"ID" is the OracleMetaLink note number. Unlike the previous formatting APIs, this is
not automatically added to the report, but is instead returned as a formatted String. The
String can be added to the report by calling println(…), and so on.

String getReportContents()
This should be called after Report object has been populated. It returns a string with the
formatted report contents and should be returned in the getReport() method.

Developing Diagnostic Tests 2-7

Sample Code
import oracle.apps.jtf.regress.qatool.report.Report;
…

public class MyReportTest extends QATestImpl {

Report report = null; //instance variable

public boolean runTest() {
report = createReportFormatter();
report.beginSection("Profile Setup", "Validate if profiles …")

// test code and report construction
. . .

}

. . .

public String getReport() {
if (report == null) {
return "";
} else {

return report.getReportContents();
}

}

. . .
}

Report Interface
package oracle.apps.jtf.regress.qatool.report;

import java.io.*;

/**
* Diagnostic Report. This class handles all the formatting of th
e diagnostic
* report, and enforces output (look and feel) consistency and st
andards
*
*/
public interface Report
{

public static final String RCS_ID = "$Header: Report.java $";
/*
* Methods to support QATestInterface required methods
*/
/**
* Returns <code>true</code> if errors exist in the report
*
* @return <code>true</code> if errors exist
*/
public boolean getExceptionsExist();

/**

2-8 Oracle Applications Supportability Guide

* Returns <code>true</code> if errors exist in the report
*
* @return <code>true</code> if errors exist
*/
public boolean getErrorsExist();

/**
* Returns <code>true</code> if warnings exist in the report
*
* @return <code>true</code> if warnings exist
*/
public boolean getWarningsExist();

/**
* Returns the full report (including formatting).
*
* @return The reportContents value
*/
public String getReportContents();

/*
* Implementor usable methods (non-formatting)
*/
/**
* Sets the footer to be printed at the bottom of the report.
*
* @param footer The footer
*/
public void setFooter(String footer);
/*
* Formatting methods
*/
/**
* Gets the current indent level
*
* @return The current indent level
*/
public int getIndentLevel();

/**
* Starts a new section in the report. If this is a top level

section,
* the <code>sectionName</code> will be printed (in bold for

HTML)
* and a quicklink is automatically added. The output after i

t
* (i.e. the section contents) will be indented
* appropriately.
*
* @param sectionName Section name to print
*/
public void beginSection(String sectionName);

Developing Diagnostic Tests 2-9

/**
* Starts a new section in the report. If this is a top level

section,
* the <code>sectionName</code> will be printed (in bold for

HTML). The
* output after it (i.e. the section contents) will be indent

ed
* appropriately.
*
* @param sectionName Section name to print
* @param quickLink Add this section to quicklinks
*/
public void beginSection(String sectionName, boolean quickLink

);

/**
* Starts a new section in the report. If this is a top level

section,
* the <code>sectionName</code> will be printed (in bold for

HTML)
* and a quicklink is automatically added. The
* output after it (i.e. the section contents) will be indent

ed
* appropriately.
*
* @param sectionName Section name to print
* @param sectionDesc Section description to print
*/
public void beginSection(String sectionName, String sectionDes

c);

/**
* Starts a new section in the report. If this is a top level

section,
* the <code>sectionName</code> will be printed (in bold for

HTML). The
* output after it (i.e. the section contents) will be indent

ed
* appropriately.
*
* @param sectionName Section name to print
* @param sectionDesc Section description to print
* @param quickLink Add this section to quicklinks
*/
public void beginSection(String sectionName, String sectionDes

c, boolean quickLink);

/**
* Ends a section (and outdents any following output).
*/
public void endSection();

/**
* Add a quicklink to the current location in the report. Doe

2-10 Oracle Applications Supportability Guide

sn’t print
* any visible text to the current location in the report.
*
* @param name Quicklink name to show in TOC
*/
public void addQuickLink(String name);

/**
* Adds the error message and fix information to the report.

<code>ERROR</code>
* and <code>ACTION</code> text and formatting are added auto

matically.
*
* @param errorMessage Error message
* @param fixInformation Fix information (ACTION)
*/
public void printError(final String errorMessage, final String

fixInformation);

/**
* Adds the exception message and fix information to the repo

rt. <code>ERROR</code>
* and <code>ACTION</code> text and formatting are added auto

matically.
*
* @param t Throwable to print
* @param message Description of where the message was caugh

t
*/
public void printException(Throwable t, String message);

/**
* Adds the warning message and fix information to the report

. <code>WARNING</code>
* and <code>ACTION</code> text and formatting are added auto

matically.
*
* @param warningMessage Warning message to print
* @param fixInformation Fix information (ACTION)
*/
public void printWarning(final String warningMessage, final St

ring fixInformation);

/**
* Adds the notice message to the report. <code>ATTENTION</co

de> text and
* formatting are added automatically.
*
* @param noticeMessage Notice message to print
*/
public void printNotice(final String noticeMessage);

/**

Developing Diagnostic Tests 2-11

* Adds the notice message and fix information to the report.
<code>ATTENTION</code>

* and <code>ACTION</code> text and formatting are added auto
matically.

*
* @param noticeMessage Warning message to print
* @param fixInformation Fix information (ACTION)
* @deprecated Diagnostic standards do not allow f

or an action
* to be specified for Notice/Attention messages
*/
public void printNotice(String noticeMessage, String fixInform

ation);

/**
* Add a blank line
*/
public void println();

/**
* Adds the output to the report. Line is terminated with cr/

lf (or
* >br< for html)
*
* @param output Text to print
*/
public void println(String output);

/**
* Adds the output to the report. Line is terminated with cr/

lf (or
* >br< for html)
*
* @param output Object to print (calls output.toString)
*/
public void println(Object output);

/**
* Adds the output to the report. Line is terminated with cr/

lf (or
* >br< for html)
*
* @param output boolean to print
*/
public void println(boolean output);

/**
* Adds the output to the report. Line is terminated with cr/

lf (or
* >br< for html)
*
* @param output Character to print
*/

2-12 Oracle Applications Supportability Guide

public void println(char output);

/**
* Adds the output to the report. Line is terminated with cr/

lf (or
* >br< for html)
*
* @param output Double to print
*/
public void println(double output);

/**
* Adds the output to the report. Line is terminated with cr/

lf (or
* >br< for html)
*
* @param output Float to print
*/
public void println(float output);

/**
* Adds the output to the report. Line is terminated with cr/

lf (or
* >br< for html)
*
* @param output integer to print
*/
public void println(int output);

/**
* Adds the output to the report. Line is terminated with cr/

lf (or
* >br< for html)
*
* @param output Long to print
*/
public void println(long output);

/**
* Adds the output to the report. Does not add cr/lf (or >

br< for
* html)
*
* @param output Text to print
*/
public void print(String output);

/**
* Adds the output to the report. Does not add cr/lf (or >

br< for
* html)
*

Developing Diagnostic Tests 2-13

* @param output Object to print (calls output.toString)
*/
public void print(Object output);

/**
* Adds the output to the report. Does not add cr/lf (or >

br< for
* html)
*
* @param output boolean to print
*/
public void print(boolean output);

/**
* Adds the output to the report. Does not add cr/lf (or >

br< for
* html)
*
* @param output Character to print
*/
public void print(char output);

/**
* Adds the output to the report. Does not add cr/lf (or >

br< for
* html)
*
* @param output Double to print
*/
public void print(double output);

/**
* Adds the output to the report. Does not add cr/lf (or >

br< for
* html)
*
* @param output Float to print
*/
public void print(float output);

/**
* Adds the output to the report. Does not add cr/lf (or >

br< for
* html)
*
* @param output integer to print
*/
public void print(int output);

/**
* Adds the output to the report. Does not add cr/lf (or >

br< for

2-14 Oracle Applications Supportability Guide

* html)
*
* @param output Long to print
*/
public void print(long output);

/*
* Table/Tree-Table related methods
*/
/**
* Prints a table title and column headers. printTableRow sho

uld be
* called to add rows, and printTableClose must be called to

add the
* closing tags for the table.
*
* @param title Table title
* @param summary Table summary (508)
* @param headers Column headers
*/
public void printTableHeader(String title, String summary, Str

ing[] headers);

/**
* Prints a table title and column headers.printTableRow shou

ld be called
* to add rows, and printTableClose must be called to add the

closing
* tags for the table.
*
* @param summary Table summary (508)
* @param headers Column headers
*/
public void printTableHeader(String summary, String[] headers)

;

/**
* Prints a row in a table
*
* @param cells Cell values
*/
public void printTableRow(String[] cells);

/**
* Prints a formatted row in a table. Cell values are formatt

ed depending
* on the type of value.
*
* @param cells Cell values
*/
public void printTableRow(Object[] cells);

/**

Developing Diagnostic Tests 2-15

* Prints a table row with the first column indented based on
<code>level</code>

* . Used for printing heirarchy trees.
*
* @param cells Cell values
* @param level Level in heirarchy (indent level)
*/
public void printTreeRow(String[] cells, int level);

/**
* Prints a table row with the first column indented based on

<code>level</code>
* . Used for printing heirarchy trees.Cell values are format

ted
* depending on the type of value.
*
* @param cells Cell values
* @param level Level in heirarchy (indent level)
*/
public void printTreeRow(Object[] cells, int level);

/**
* Adds closing tags for a table. Must be called before begin

ning any
* non-table output.
*/
public void printTableClose();

/**
* Adds closing tags for a table. Must be called before begin

ning any
* non-table output. String footer Table footer
*
* @param footer Table footer
*/
public void printTableClose(String footer);

/**
* Prints supplied values as table (in HTML as appropriate)
*
* @param summary Table summary (508 requirement)
* @param headers Table column headings
* @param values Table values
*/
public void printTable(String summary, String[] headers, Strin

g[][] values);

/**
* Prints supplied values as table (in HTML as appropriate)
*
* @param title Table title/caption
* @param summary Table summary (508 requirement)
* @param headers Table column headings

2-16 Oracle Applications Supportability Guide

* @param values Table values
*/
public void printTable(String title, String summary, String[]

headers, String[][] values);

/**
* Prints supplied values as table (in HTML as appropriate)
*
* @param title Table title/caption
* @param summary Table summary (508 requirement)
* @param footer Table footer
* @param headers Table column headings
* @param values Table values
*/
public void printTable(String title, String summary, String fo

oter, String[] headers, String[][] values);

/**
* Prints supplied values as table (in HTML as appropriate)
*
* @param summary Table summary (508 requirement)
* @param headers Table column headings
* @param values Table values
* @param levels Indent level for the first column. This is

the indent
* level, not the number of characters to indent.
*/
public void printTree(String summary, String[] headers, String

[][] values, int[] levels);

/**
* Prints supplied values as table (in HTML as appropriate)
*
* @param title Table title/caption
* @param summary Table summary (508 requirement)
* @param headers Table column headings
* @param values Table values
* @param levels Indent level for the first column. This is

the indent
* level, not the number of characters to indent.
*/
public void printTree(String title, String summary, String[] h

eaders, String[][] values, int[] levels);

/**
* Prints supplied values as tree/table as appropriate for th

e output
* format
*
* @param title Table title/caption
* @param summary Table summary (508 requirement)
* @param footer Table footer
* @param headers Table column headings
* @param values Table values

Developing Diagnostic Tests 2-17

* @param levels Indent level for the first column. This is
the indent

* level, not the number of characters to indent.
*/
public void printTree(String title, String summary, String foo

ter, String[] headers, String[][] values, int[] levels);

/*
* Non-printing methods
*/
/**
* Format a link to a Metalink note as appropriate for the ou

tput format
*
* @param name Document name
* @param id Note number/Doc ID
* @return The link for printing (pass this to a printXX

X method)
*/
public String formatNoteLink(String name, String id);

/**
* Format a link to a Metalink note as appropriate for the ou

tput format
*
* @param id Note number/Doc id
* @return The link for printing (pass this to a printXXX

method)
*/
public String formatNoteLink(String id);

/**
* Format a link to a CR file as appropriate for the output f

ormat
*
* @param name File name/description
* @param id CR File ID
* @return The link for printing (pass this to a printXX

X method)
*/
public String formatCRLink(String name, String id);

/**
* Format a link to a Metalink note as appropriate for the ou

tput format
*
* @param name Site name/description (ex. "Metalink")
* @param url Site URL (ex. "http://metalink.oracle.com/")
* @return The link for printing (pass this to a printXX

X method)
*/
public String formatLink(String name, String url);

2-18 Oracle Applications Supportability Guide

/*
* Debug Methods
*/
/**
* Prints a list of report sections with the time consumed fro

m the
* last section
*/
public void printReportTiming();

}

Pipelining Dependencies
Certain tests can behave as container test cases, which contain a set of one or more tests
to be executed in a specific order. The tests within a container test class are referred to
as dependencies. When a test specifies dependencies to be run, it can also chain the
dependencies so that the outputs of the previous tests are supplied as inputs for the next
dependency in the pipeline. To do this, add the following line in the test constructor to
tell the framework to pass outputs to the next test:

public SessionTest() {
...
dependentClassNames = new String[3];
dependentClassNames[0] =
"oracle.apps.jtf.regress.qatool.testcase.authenticateTest";

dependentClassNames[1] =
"oracle.apps.jtf.regress.qatool.testcase.createSessionTest";

dependentClassNames[2] =
"oracle.apps.jtf.regress.qatool.testcase.ValidateLogoutSessionTe

st";

isDependencyPipelined = true;
}

Each test must specify the output values it wishes to pass to the next test. This is done
by returning a Hashtable from the getOutputValues() API, which each test should
implement if a member of a pipeline.

public Hashtable getOutputValues() {
Hashtable out = new Hashtable();
out.put("Username", this.username);
out.put("<parameter-name>", "<parameter-value>");
return out;

}

These outputs are not be passed to the next test unless that test specifies input parameters
of the same name as the output parameters. For example, if authenticateTest did not
specify a "Username" parameter in its constructor (via "addInput(...)"), then this value
would not be passed to it.

Also, the input values that are specified by the main test and are given values from
the database (in basic mode) or the user (in advanced mode) are automatically passed
to each test specified as a dependency, whether the test is dependency-pipelined or
not. However, if a test is dependency-pipelined, then it can override these original
values before passing them to the next test.

Developing Diagnostic Tests 2-19

Pipelining PL/SQL Scripts
First, you must write Diagnostics PL/SQL test scripts. There are three procedures that
you should write specifically for supporting the pipelining dependency:

• PROCEDURE getDependencies (package_names OUT NOCOPY JTF_DIAG_DEPE
NDTBL);

• PROCEDURE isDependencyPipelined (str OUT NOCOPY VARCHAR2);

• PROCEDURE getOutputValues(outputValues OUT NOCOPY JTF_DIAG_OUTPU
TTBL);

Samples of test code might look like:

PROCEDURE getDependencies (package_names OUT NOCOPY JTF_DIAG_DEPE
NDTBL) IS
BEGIN
package_names := JTF_DIAGNOSTIC_ADAPTUTIL.initDependencyTable;

END getDependencies;

PROCEDURE isDependencyPipelined (str OUT NOCOPY VARCHAR2) IS
BEGIN
str := ’FALSE’;
END isDependencyPipelined;

PROCEDURE getOutputValues(outputValues OUT NOCOPY JTF_DIAG_OUTPUTT
BL) IS
tempOutput JTF_DIAG_OUTPUTTBL;
BEGIN
tempOutput := JTF_DIAGNOSTIC_ADAPTUTIL.initOutputTable;
tempOutput := JTF_DIAGNOSTIC_ADAPTUTIL.addOutput(tempOutput,’Appl
ication ID’, test_out);
outputValues := tempOutput;
EXCEPTION
when others then
outputValues := JTF_DIAGNOSTIC_ADAPTUTIL.initOutputTable;
END getOutputValues;

Note that in the sample code above, in the procedure getOutputValues, the variable
name ’test_out’ should be defined in the specification file of the PL/SQL package. For
example, define it as

test_out VARCHAR2(200);

so that the ’test_out’ variable can be assigned a value in other procedures like "runtest".

The following data types and methods support those three methods:

2-20 Oracle Applications Supportability Guide

create or replace type JTF_DIAG_OUTPUTS as object -- output valu
e entry
create or replace type JTF_DIAG_OUTPUTTBL as TABLE of JTF_DIAG_OUT
PUTS; -- hashtable
create or replace type JTF_DIAG_DEPENDTBL as table of VARCHAR2(400
0); -- dependencies

-- init/add output Hashtable
FUNCTION addOutput(outputs IN JTF_DIAG_OUTPUTTBL,var IN VARCHAR2,
val IN VARCHAR2) RETURN JTF_DIAG_OUTPUTTBL;
FUNCTION initOutputTable RETURN JTF_DIAG_OUTPUTTBL;

-- init/output dependency array
FUNCTION addDependency(dependencies IN JTF_DIAG_DEPENDTBL, val IN
VARCHAR2) RETURN JTF_DIAG_DEPENDTBL;
FUNCTION initDependencyTable RETURN JTF_DIAG_DEPENDTBL;

Sample Master Test Case Containing Only Pipelined Test Names
Here is an example of a test case with only pipelined test names:

CREATE OR REPLACE PACKAGE BODY PIPE_DIAG_QAPACKAGE AS

PROCEDURE getDependencies (package_names OUT NOCOPY JTF_DIAG_DEP
ENDTBL) IS

tempDependencies JTF_DIAG_DEPENDTBL;
BEGIN
tempDependencies := JTF_DIAGNOSTIC_ADAPTUTIL.initDependencyTab

le;
tempDependencies := JTF_DIAGNOSTIC_ADAPTUTIL.addDependency(tem

pDependencies,’INV_DIAG_QAPACKAGE’);
tempDependencies := JTF_DIAGNOSTIC_ADAPTUTIL.addDependency(tem

pDependencies,’OE_DIAG_QAPACKAGE’);
package_names := tempDependencies;
EXCEPTION
when others then
package_names := JTF_DIAGNOSTIC_ADAPTUTIL.initDependencyTable

;
END getDependencies;

PROCEDURE isDependencyPipelined(str OUT NOCOPY VARCHAR2) IS
BEGIN
str := ’TRUE’;

END isDependencyPipelined;

PROCEDURE getOutputValues(outputValues OUT NOCOPY JTF_DIAG_OUTPU
TTBL) IS
BEGIN

outputValues := JTF_DIAGNOSTIC_ADAPTUTIL.initOutputTable;
END getOutputValues;

PROCEDURE runtest(inputs IN JTF_DIAG_INPUTTBL,
report OUT NOCOPY JTF_DIAG_REPORT,
reportClob OUT NOCOPY CLOB) IS

statusStr VARCHAR2(50); -- SUCCESS or FAILURE
errStr VARCHAR2(4000); -- error message

Developing Diagnostic Tests 2-21

fixInfo VARCHAR2(4000); -- fix tip
isFatal VARCHAR2(50); -- TRUE or FALSE

BEGIN
JTF_DIAGNOSTIC_ADAPTUTIL.setUpVars; -- must have

-- html formatting
JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(’@html’);
JTF_DIAGNOSTIC_COREAPI.Show_Header(null, null); -- add html c

ss

-- NOTE: no any execution code needs to be put here!

statusStr := ’’;
errStr := ’’;
fixInfo := ’’;
isFatal := ’’;

-- construct report
report := JTF_DIAGNOSTIC_ADAPTUTIL.constructReport(statusStr,

errStr,fixInfo,isFatal);
reportClob := JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob;

END runTest;

END PIPE_DIAG_QAPACKAGE;

Seamless Pipelining between Diagnostics Java and PL/SQL Scripts
Since PL/SQL pipelining and Java pipelining share the same procedure, you can pipeline
the PL/SQL scripts and Java scripts as a bonus of implementing PL/SQL pipelining.

To pipeline the Java and PL/SQL test scripts, define the master test case, which only
contains the test names of Java/PL/SQL test names, as either Java or PL/SQL test
script. You can even pipeline Java scripts using a PL/SQL master script, and pipeline
PL/SQL scripts using a Java master script.

Sample Master Script to Pipeline Java and PL/SQL Scripts
You can chose to write a master script in Java or PL/SQL.

The following is a sample PL/SQL script which uses the following method to drive the
pipelining between a PL/SQL test case (INV_DIAG_QAPACKAGE3) and a Java test case
(oracle.apps.jtf.regress.qatool.testcase.MenuTest).

2-22 Oracle Applications Supportability Guide

PROCEDURE getDependencies (package_names OUT NOCOPY JTF_DIAG_DEPE
NDTBL) IS

tempDependencies JTF_DIAG_DEPENDTBL;
BEGIN
tempDependencies := JTF_DIAGNOSTIC_ADAPTUTIL.initDependencyTab

le;
tempDependencies := JTF_DIAGNOSTIC_ADAPTUTIL.addDependency(tem

pDependencies,’INV_DIAG_QAPACKAGE3’);
tempDependencies := JTF_DIAGNOSTIC_ADAPTUTIL.addDependency(tem

pDependencies,’oracle.apps.jtf.regress.qatool.testcase.MenuTest’);

package_names := tempDependencies;
EXCEPTION
when others then
package_names := JTF_DIAGNOSTIC_ADAPTUTIL.initDependencyTable

;
END getDependencies;

Developing PL/SQL Test Cases
If you are writing PL/SQL test cases, then use the following steps to successfully develop
a new PL/SQL test case for Oracle Diagnostics.

1. Create a PL/SQL package under the APPS schema with a meaningful naming
structure, like <APP_ID>_<group_name>_<test_name>. This to ensure that the
package is immediately recognizable in the database and can be found when
executing unit tests in the future.

2. Implement core APIs in the PL/SQL test package to plug into Oracle
Diagnostics. These mandatory APIs must be declared in the package header section
in order to be visible and accessible to the rest of the framework. The mandatory
APIs are described in PL/SQL Package Test Case APIs, page 2-24. These procedures
are briefly summarized below:

• Implement a runTest(..) procedure to provide core test logic and write to PL/SQL
out parameters for reporting results back to the framework.

• Implement getDefaultTestParams(..) to provide the framework with test
parameters (if needed).

• Implement the getTestName(..) , getComponentName(..), and getTestDesc(..)
procedures to feed test metadata back into the framework.

• (Optional) Implement init() and cleanup() procedures to create/initialize and
drop/free data structures or resources at the beginning and end of each test.

3. Follow package structure and guidelines:

• All core APIs from Step 2 above must be declared in the package header in order
to be accessible externally by Oracle Diagnostics.

• Include the RCS version information for the package specification and body. This
step is important because the RCS version information is used to determine the
version of the test for reporting purposes.

4. Utilize the two helper packages which assist in the development of PL/SQL
diagnostic tests:

Developing Diagnostic Tests 2-23

• JTF_DIAGNOSTIC_ADAPTUTIL

This package provides a set of procedures and functions for object initialization
and manipulation of some of the PL/SQL data structures that are part of the
framework. This package has a broad range of utility APIs. For example, one
procedure retrieves an initialized CLOB, and another procedure that adds an
input to another data structure. The complete API is described in the section
PL/SQL Helper Packages, page A-1.

• JTF_DIAGNOSTIC_COREAPI

This package provides a set of helper procedures and functions for standard
formatting of reports. The package contains APIs that provide both HTML
and plain text formatting. APIs are available to return formatted results from
the database. The complete API is described in the section PL/SQL Helper
Packages, page A-1.

PL/SQL Package Test Case APIs
Before developing a test package, you should familiarize yourself with the procedures
that form the core of the PL/SQL diagnostics logic.

See also: Pipelining PL/SQL Scripts, page 2-20.

runTest
Procedure runTest (arg1 IN JTF_DIAG_INPUTTBL,

arg2 OUT JTF_DIAG_REPORT,
arg3 OUT CLOB)

This procedure is the main entry point for PL/SQL test execution. The test
logic is executed within this procedure. During test execution, it propagates the
JTF_DIAG_REPORT and CLOB objects with the test report messages and detailed
report data respectively before being returned to the framework.

The JTF_DIAG_INPUTTBL object Is passed into the runTest(..) procedure from the
framework. This object contains the input values for the test that were retrieved from
the getDefaultTestParams(..) procedure. The getDefaultTestParams(..) is called by the
framework prior to the runTest(..) procedure.

There are fourVARCHAR2 fields in a JTF_DIAG_REPORT object. The
status, errStr, fixInfo, and isFatal fields, along with the report CLOB data, must be
propagated in the event of an error occurring in the test. In such cases, the status string
is set to FAILURE. For a successful test run, the status string is set to SUCCESS. On
some occasions, the error which occurs is not sufficiently critical to halt execution. In
this case, the status field should be set with the stringWARNING. This setting has the
effect of displaying the reportClob along with the error that occurred. All fields may
populated as if an error had occurred, but test execution is not halted. If the test status is
set to SUCCESS, then only the report CLOB needs to be written to with correct data. The
report CLOB data (if any) is rendered to the UI by the framework irrespective of test
failure, warning, or success.

• The status field that contains the result of the test is of type VARCHAR2. If the
status field value is SUCCESS, then you are flagging that the test case passed. If the
status field is FAILURE, then you are flagging a test case failure. If the status field is
WARNING, then you are flagging a test case warning.

2-24 Oracle Applications Supportability Guide

• The errStr field contains a string representation of the error (if any). This string can
have up to 4000 characters. For example, you could set the error message to be a
SQLERRM thrown by a caught exception.

• The fixInfo field contains a string providing suggestions on how to fix the error (if
any). This string can have up to 4000 characters.

• The isFatal field contains a VARCHAR2 representation of a Boolean value. The
isFatal value can either be "TRUE" or "FALSE". If the value is set to "TRUE", then
the framework is informed that if the test has been reported as failing and that the
current error is a fatal error.

These values can be assigned to their fields in the JTF_DIAG_REPORT object directly, or
with a call to a procedure in the utility package, JTF_DIAGNOSTIC_ADAPTUTIL.
constructReport(..). This procedure takes the report fields described above and inserts
them into the report object ready to be returned to the framework. The Diagnostic
PL/SQL test case adapter massages the data coming back so that it is available to the
framework’s reporting and logging logic.

A CLOB object is returned to the framework upon completion of a test run, as it is also
registered as an OUT parameter. This CLOBmust be initialized before it can be used. You
can do this with a call to the JTF_DIAGNOSTIC_ADAPTUTIL.setUpVarsfunction.
Hence, we call this function immediately after commencing execution of the runTest(..)
block. The CLOB object can be written to with calls to the addStringToReport(..)
procedure call in the utility package JTF_DIAGNOSTIC_ADAPTUTIL. This call
appends the passed-in line of text/string or LONG object to the overall report. Note that
if the report is HTML-based, then the first string added to the report must be "@html".

Oracle Diagnostics provides a package called JTF_DIAGNOSTIC_COREAPI. It
contains a library of APIs which provide for formatted HTML and plain text reporting. If
you do not use this package, then you must provide all HTML formatting tags for the
report (such as colors, new lines, and so on).

Calls to the core API package JTF_DIAGNOSTIC_COREAPI will write to the same
report CLOB object. For example, the JTF_DIAGNOSTIC_COREAPI.line_out(..)
procedure is the same as JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(..)
where both eventually write to the same CLOB.

All input variables can be retrieved with a call to the getInputValue(..) procedure in
the utility package. This procedure passes in the name of the variable and returns the
associated value. The value returned is of type VARCHAR2. You must convert this
object to other types (INTEGER, NUMBER, etc.) if needed. Variable, value pairings
must be made with calls to the addInput(..) procedure in the getDefaultTestParams(..)
procedure.

The runTest(..) procedure returns a CLOB, which contains a detailed report for
the framework. The PL/SQL OUT variable must reference the report CLOB when
the runTest(..) procedure returns. The report CLOB can be retrieved with a call to
JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob and then be reassigned to the
CLOB OUT variable. In light of this, each runTest(..) procedure typically has logic
implemented before the test returns control to the framework. That is, at the end of a
normal runTest(..) body block and in its exception handler.

Let’s say that the test has OUT variables as below :

runTest(arg1 IN JTF_DIAG_INPUTTBL,
arg2 OUT JTF_DIAG_REPORT,
arg3 OUT CLOB)

Developing Diagnostic Tests 2-25

Before returning to the framework, these OUT variables should be set and pointing to
the correct JTF_DIAG_REPORT report and CLOB. The example below shows how
this can be done:

arg2 := JTF_DIAGNOSTIC_ADAPTUTIL.constructReport(‘SUCCESS’,
‘Error occurred’,

‘Fix the Error’,
‘FALSE’)

arg3 := JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob;

The following code sample demonstrates a simple test which checks if the user name
passed in has an account and is registered in the FND_USER table. It demonstrates how
PL/SQL tests are written for Oracle Diagnostics and demonstrates some of the more
important implementation details mentioned above.

2-26 Oracle Applications Supportability Guide

1 PROCEDURE runtest(inputs IN JTF_DIAG_INPUTTBL,
2 report OUT JTF_DIAG_REPORT,
3 reportClob OUT CLOB) IS
4 reportStr LONG;
5 counter NUMBER;
6 c_userid VARCHAR2(50);
7 statusStr VARCHAR2(50);
8 errStr VARCHAR2(4000);
9 fixInfo VARCHAR2(4000);
10 isFatal VARCHAR2(50);
11 BEGIN
12 JTF_DIAGNOSTIC_ADAPTUTIL.setUpVars;
13 JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(‘@html’);
14 c_userid := JTF_DIAGNOSTIC_ADAPTUTIL.getInputValue(’USERNAME’
,inputs);
15 SELECT COUNT(*) INTO counter
16 FROM FND_USER
17 WHERE user_name LIKE c_userid;
18 IF (counter > 0) THEN
19 reportStr := ‘The test completed successfully’;
20 JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(reportStr);
21 statusStr := ’SUCCESS’;
22 ELSE
23 statusStr := ’FAILURE’;
24 errStr := ’This test failed as ’||counter||’ is less than 1
’;
25 fixInfo := ‘Make sure that the username entered is correct’
;
26 isFatal := ’FALSE’;
27 END IF;
28 report := JTF_DIAGNOSTIC_ADAPTUTIL.constructReport(statusStr
,

errStr,
fixInfo,
isFatal);

29 reportClob := JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob;
30 EXCEPTION WHEN others THEN
31 JTF_DIAGNOSTIC_COREAPI.errorprint(’Error: ’||sqlerrm);
32 JTF_DIAGNOSTIC_COREAPI.ActionErrorPrint(’This is the except
ion

handler’);
33 statusStr := ’FAILURE’;
34 errStr := sqlerrm ||’ occurred in script – Exception handle
d’;
35 fixInfo := ’Avoid throwing exceptions’;
36 isFatal := ’FALSE’;
37 report := JTF_DIAGNOSTIC_ADAPTUTIL.constructReport(statusSt
r,

errStr,
fixInfo,
isFatal)

;
38 reportClob := JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob;
39 END runTest;

The following table provides descriptions of the lines in the above code sample.

Developing Diagnostic Tests 2-27

Line Descriptions for Code Sample

Line(s) Description

1-3 The runTest procedure takes the three
arguments shown.

4-10 The declaration section of variables used in this
example.

12 A call to initialize objects for the current
session. Initializes a CLOB for report writing
and initializes the global HTML formatting flag
to false. Unless the first string in the report
CLOB is "@html", this ensures that output is in
plain text (the default setting).

13 If the report to be generated contains HTML
formatting, then the first string written to the
report must be "@html". In this case, HTML
formatting has been turned on.

14 This line retrieves the value of the variable
USERNAME and stores it locally in the
c_userid variable. This is how the test retrieves
inputs in the framework (variables are added in
getDefaultTestParams(..) procedure).

15-17 A SQL query to demonstrate using the recently
retrieved input value c_userid.

20 Writing a string to the report CLOB.

21 Setting a local variable with the SUCCESS
string. This will be added to the outgoing
JTF_DIAG_REPORT object later in the code
when the constructReport(..) is called.

24 Constructing an error message to return.

25 Providing fix information if an error occurs.

26 Indicating with a VARCHAR2 object that if the
error occurs, it is not a fatal error. Fatal errors
have the ability to halt any following tests. True
means fatal, false means not fatal.

28 Here the PL/SQL OUT parameter JTF_D
IAG_REPORT is propagated with a call to the
constructReport(..) procedure. The status string
error description (if error occurs), fix Suggestion
(if error occurs), and is error fatal (if error
occurs) are added to the JTF_DIAG_REPORT
object.

29 Here the PL/SQL OUT parameter CLOB is
retrieved and gets assigned the report CLOB for
the current session. The call getReportClob()
retrieves the CLOB initialized by setupVars and
written to with the addStringToReport(..) and
JTF_DIAGNOSTIC_COREAPI procedural
calls.

2-28 Oracle Applications Supportability Guide

Line(s) Description

31-32 Calling support APIs in the JTF_DIAGNOST
IC_COREAPI package.

33-36 See lines 21-26 above.

37-38 See lines 28 and 29 above. If an exception is
being caught, then the report and reportClob
objects have to be assigned and returned in the
exception block. This behavior is similar to how
they would be returned in the main block, lines
11-29.

getDefaultTestParams
Procedure getDefaultTestParams(arg1 OUT JTF_DIAG_INPUTTBL)

In this procedure, you should register any input parameters that the test needs, along
with their default values. This procedure is executed separately from test execution in
order to determine input values (if applicable). This procedure is called by the framework
so that proper input fields are rendered through the framework UI. The framework
requires all inputs that the test is to take as inputs. The JTF_DIAG_INPUTTBL
object is propagated here with values and upon its return is then queried by the
framework. Eventually this object is passed into the runTest(..) procedure while
invoking test execution.

Calls to the utility package procedure addInput(..) add input variables to the
JTF_DIAG_INPUTTBL object that is returned to the framework. The addInput(..)
procedure is overloaded and by default displays the value field on the diagnostic UI. A
call to the addInput(..) procedure with the showValue parameter set to "false" (Boolean
value) hides the value field data on the UI. For example, if you want to add the parameter
"USERNAME", then you might use something like the following:

1 PROCEDURE getDefaultTestParams(defaultInputValues OUT JTF_DIAG_
INPUTTBL)IS
2 tempInput JTF_DIAG_INPUTTBL;
3 BEGIN
4 tempInput := JTF_DIAGNOSTIC_ADAPTUTIL.initinputtable;
5 tempInput :=

JTF_DIAGNOSTIC_ADAPTUTIL.addInput(tempInput,’USERNAME’,’SYS
ADMIN’);
6 defaultInputValues := tempInput;
7 END getDefaultTestParams;

The following table provides descriptions of these code lines.

Developing Diagnostic Tests 2-29

Line Description of Code Sample

Lines Description

1 This method expects that defaultInputValues
is passed in as an OUT parameter.

4 Create an initialized JTF_DIAG_INPUTTBL
object called tempwith a call to the inputtable()
procedure.

5 Add a parameter called USERNAME with
SYSADMIN as its default value. We pass in
the JTF_DIAG_INPUTTBL to the addInput(..)
procedure and add the parameter to it.

6 Assign the OUT variable to the object that
contains all the recently added input variables.

getTestName
Procedure getTestName(arg1 OUT VARCHAR2)

You should return the name of the test in this procedure. This procedure is accessed by
the framework to query the name of the procedure. If the procedure is missing or throws
an error, then the string "Unknown" will be returned in its place. The procedure returns
a VARCHAR2 object that holds the name of the test. For example:

PROCEDURE getTestName(name OUT VARCHAR2) IS
BEGIN
name := ’fnd_user User account test’;

END getTestName;

getComponentName
Procedure getComponentName(arg1 OUT VARCHAR2)

You should return the name of the test component in this procedure. The framework
accesses this procedure for the name of the component that this test case belongs to. If
the procedure is missing or throws an error, then the string "Unknown" will be returned
in its place. The procedure returns a VARCHAR2 object, which is the name of the test
component. For example:

PROCEDURE getComponentName(name OUT VARCHAR2) IS
BEGIN
name := ‘User Account Tests’;

END getComponentName;

getTestDec
Procedure getTestDesc(arg1 OUT VARCHAR2)

You should return a description of the test in this procedure. The framework accesses this
procedure for the description of this test case. If the procedure is missing or throws an

2-30 Oracle Applications Supportability Guide

error, then the String "No Description Available" will be used in its place. The procedure
returns a VARCHAR2 object, which contains the description of the test. For example:

PROCEDURE getTestDesc(desc OUT VARCHAR2) IS
BEGIN
desc :=’fnd_user User account test–checks for a account in fnd_u

ser’
‘table’;

END getTestDesc;

getTestMode
FUNCTION getTestMode RETURN INTEGER

This function returns the current test mode that the current PL/SQL test will operate
as. This function is not mandatory and all tests will default to basic mode.

The mode returned by this function can be one of the following:

• JTF_DIAGNOSTIC_ADAPTUTIL.BASIC_MODE

The test is run with minimal user interaction and as part of the group it belongs
to. If the test requires inputs, then the values will be obtained from preconfigured
values. This is the default mode.

• JTF_DIAGNOSTIC_ADAPTUTIL.ADVANCED_MODE

The test can only be run individually. Typically tests that are used for probing the
system for specific input values fall in this category. Inputs are inserted by the
customer during test invocation.

• JTF_DIAGNOSTIC_ADAPTUTIL.BOTH_MODE

The test can be executed in either basic or advanced mode. Most tests fall into this
category.

An example of how a PL/SQL test would explicitly set itself to be an Advanced test
follows below:

FUNCTION getTestMode return INTEGER IS
BEGIN
return JTF_DIAGNOSTIC_ADAPTUTIL.ADVANCED_MODE;

END getTestMode;

init
Procedure init()

This procedure does not take any parameters and is always called prior to the runTest
procedure being executed. In this procedure, implement the code for any data structures
that need to be set up before the test runs. For example:

PROCEDURE init IS
BEGIN
-- Example, to create a temporary table for the test
-- execute immediate ‘create table temp_qa(name VARCHAR2(30))’;
null;

END init;

Developing Diagnostic Tests 2-31

cleanup
Procedure cleanup()

This procedure does not take any parameters and is called after the runTest procedure
has been executed. In this procedure, implement the code for any data structures that
need to be cleaned up after the test runs. Typically, these are the data structures that
were set up in the init() call. You should still implement this procedure and include a
null code block even if there is nothing to be done after the test is run. For example:

PROCEDURE cleanup IS
BEGIN
-- Example, to drop the temporary table created in the init() ca

ll above.
null;

END cleanup;

PL/SQL Utility Packages
As mentioned earlier, Oracle Diagnostics provides two helper packages for the
PL/SQL diagnostic test writing process. For more information on these helper
packages, see PL/SQL Helper Packages, page A-1. Note that the APIs exposed in the
JTF_DIAGNOSTIC_COREAPI package are intended to facilitate the migration of test
cases written by Oracle Support. Details about the migration support for scripts written
by Oracle Support are also provided in the section PL/SQL Helper Packages, page A-1.

PL/SQL Diagnostic Test Sample Code
Below is a sample package of a diagnostic test case. It demonstrates areas the following
test package criteria:

• HTML formatting is enabled with the "@html" string in the report CLOB.

Be aware that calls to support APIs can still be made without the @html flag; the
output will be in plain text.

• Calling support APIs in the JTF_DIAGNOSTIC_COREAPI package.

• Implementing the core diagnostic APIs.

CREATE OR REPLACE PACKAGE JTF_DIAG_FNDUSERACCOUNT AS
/* $Header: filename 115.xx YYYY/MM/DD 24:MM:SS userid [no]ship $
*/
PROCEDURE init;
PROCEDURE getDefaultTestParams(defaultInputValues OUT JTF_DIAG_I

NPUTTBL);
PROCEDURE cleanup;
PROCEDURE runtest(inputs IN JTF_DIAG_INPUTTBL,

report OUT JTF_DIAG_REPORT,
reportClob OUT CLOB);

PROCEDURE getComponentName(name OUT VARCHAR2);
PROCEDURE getTestName(name OUT VARCHAR2);
PROCEDURE getTestDesc(descStr OUT VARCHAR2);

END;
/

CREATE OR REPLACE PACKAGE BODY JTF_DIAG_FNDUSERACCOUNT AS
/* $Header: filename 115.xx YYYY/MM/DD 24:MM:SS userid [no]ship $
*/
--

2-32 Oracle Applications Supportability Guide

-- procedure to initialize test datastructures
-- executed prior to test run – leave body as null otherwize
--
PROCEDURE init IS
BEGIN

-- test writer could insert special setup code here
null;
END init;

--
-- procedure to clean up any test datastructures that were setup
in the init
-- procedure call executes after test run – leave body as null oth
erwize
--
PROCEDURE cleanup IS
BEGIN
-- test writer could insert special cleanup code here

NULL;
END cleanup;

--
-- procedure to execute the PLSQL test
-- the inputs needed for the test are passed in and a report objec
t and CLOB are -- returned.
-- note the way that support API writes to the report CLOB.
--
PROCEDURE runtest(inputs IN JTF_DIAG_INPUTTBL,

report OUT JTF_DIAG_REPORT,
reportClob OUT CLOB) IS
reportStr LONG;
counter NUMBER;
dummy_v2t JTF_DIAGNOSTIC_COREAPI.v2t;
c_userid VARCHAR2(50);
statusStr VARCHAR2(50);
errStr VARCHAR2(4000);
fixInfo VARCHAR2(4000);
isFatal VARCHAR2(50);
dummy_num NUMBER;
sqltxt VARCHAR2 (2000);

BEGIN
JTF_DIAGNOSTIC_ADAPTUTIL.setUpVars;
JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(‘@html’);
JTF_DIAGNOSTIC_COREAPI.insert_style_sheet;
JTF_DIAGNOSTIC_COREAPI.line_out(‘this also writes to the clob

’);
c_userid := JTF_DIAGNOSTIC_ADAPTUTIL.getInputValue(’USERID’

,inputs);
SELECT COUNT(*) INTO counter
FROM FND_USER
WHERE user_name LIKE c_userid;
sqltxt := ’select segment1, attribute6 from pa_projects ’||

’where rownum < 5’;
dummy_num:= JTF_DIAGNOSTIC_COREAPI.display_sql(sqltxt,’Disp S

QL 2 params’);
IF (counter = 1) THEN

reportStr := ’The test completed as expected the number of

Developing Diagnostic Tests 2-33

accounts registered for ’||c_userid||’ in
fnd_user is ’||counter;

JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(reportClob,repor
tStr);

JTF_DIAGNOSTIC_ADAPTUTIL.addStringToReport(‘String into rep
ort’);

statusStr := ’SUCCESS’;
ELSE
JTF_DIAGNOSTIC_COREAPI.ActionErrorPrint(’You better do some

thing!’);
statusStr := ’FAILURE’;
errStr := ’This test failed as the accounts for the user ’|

|c_userid||’
in fnd_user count " ’||counter||’ " is not = 1 ’

;
fixInfo := ’Put informative fix info. here

’;
isFatal := ’FALSE’;

END IF;
report := JTF_DIAGNOSTIC_ADAPTUTIL.constructReport(statusS

tr,errStr,fixInfo,isFatal);
reportClob := JTF_DIAGNOSTIC_ADAPTUTIL.getReportClob;

END runTest;

--
-- procedure to report name back to framework
--
PROCEDURE getComponentName(name OUT VARCHAR2) IS
BEGIN
name := ’SDF Migration tests’;

END getComponentName;

--
-- procedure to report test description back to framework
--
PROCEDURE getTestDesc(descStr OUT VARCHAR2) IS
BEGIN
descStr := ’Checks for a User Account in fnd_user’;

END getTestDesc;

--
-- procedure to report test name back to framework
--

PROCEDURE getTestName(name OUT VARCHAR2) IS
BEGIN
name := ’fnd_user User account test’;

END getTestName;

--
-- procedure to provide the default parameters for the test case

.
-- please note the paramters have to be registered through the U

I
-- before basic tests can be run.
--
--
PROCEDURE getDefaultTestParams(defaultInputValues OUT JTF_DIAG_I

NPUTTBL) IS

2-34 Oracle Applications Supportability Guide

tempInput JTF_DIAG_INPUTTBL;
BEGIN
tempInput := JTF_DIAGNOSTIC_ADAPTUTIL.initinputtable;
tempInput := JTF_DIAGNOSTIC_ADAPTUTIL.addInput(tempInput,’USER

ID’,’SYSADMIN’);
-- tempInput := JTF_DIAGNOSTIC_

defaultInputValues := tempInput;
EXCEPTION
when others then
defaultInputValues := JTF_DIAGNOSTIC_ADAPTUTIL.initinputtable;
END getDefaultTestParams;

END;
/

Declarative Diagnostics
Declarative Diagnostics is a mechanism that allows metadata-based testing of an
application product. Here, a product engineer registers the following metadata:

• Metadata for test execution.

• Metadata for validation rules that are used at runtime to determine the success or
failure of the test.

• Metadata for reporting that the engine uses at runtime to generate reports. These
reports generated by the framework are in a standardized fashion that includes a
test run summary and test details.

Seeding of the above metadata is enabled through UI screens that have been provided by
Oracle Diagnostics.

Declarative diagnostic tests are not a replacement for Java or PL/SQL tests, but a means
of quickly registering setup type tests for your product without writing code. These
are supplemental to the Java or PL/SQL diagnostic tests that you write for granular
functionality testing of your product.

To use declarative diagnostics, an understanding of the practical details of one’s
application and familiarity with Oracle Diagnostics is sufficient.

Structure of a Declarative Diagnostic Test
Every Declarative Diagnostic Test is a "Container" for one or more sub-tests that can be
of different types. The diagnostics engine will execute each sub-test of the declarative
test in the sequence that it was seeded. The success or failure of the overall Declarative
Test is determined by the success or failure of each of the sub-tests.

Oracle Diagnostics has also provided UI screens for administering declarative diagnostic
tests. For instance, you could re-order the execution sequence of sub-tests, delete obsolete
sub-tests, update existing sub-tests, or add sub-tests to an existing declarative test.

Sub-test Types, Metadata Needed, and Use Case Examples
The framework provides the ability to seed five different types of sub-tests. It is
important for you to know the nature of each sub-test and how you could use them.

Developing Diagnostic Tests 2-35

Required Metadata
Each sub-test type has its own metadata needs. However, irrespective of sub-test
type, there are some core metadata elements that each sub-test needs. These are listed
below:

• Name: A short (< 50 characters) user-defined name that distinguishes the sub-test
from other sub-tests within the same declarative test.

• Description: An explanation of what the objective of this sub-test is and what it
does. Be mindful that the description should be meaningful not just for you but
also for the end users.

• Error Type: The nature of the error if the sub-test fails at the time it is run. Each
sub-test can have one of three error types:

• Fatal Error: Implying that in the event of failure of this sub-test, subsequent
sub-tests should not run. This also implies that failing of this sub-test was a
high severity failure.

• Normal Error: Implying that in the event of failure of this sub-test, subsequent
sub-tests should continue to be executed.

• Warning Only: Implying that failing of this sub-test should be flagged for the
system administrator’s attention. However, severity of this issue is too low to
be termed as an error.

• Error Message: In the event of an unsuccessful sub-test execution, the report
generated should have this error message for the system administrator at the
customer’s end. Again, please be mindful that this should be meaningful for the end
user to be able to understand what the error means.

• Fix Information: In the event of an unsuccessful sub-test execution, the report
generated should have information on how to resolve the issue for the system
administrator at the customer’s end. This should be as self-explanatory as possible
so that customers can fix issues at their own end without having to contact customer
support.

Finally, the sub-test types that can be registered are as follows:

Count
This purpose of this sub-test type is to count records of the table, view, or SQL
statement and logically compare that value against a pre-seeded value. For execution
metadata, apart from the core metadata mentioned above, this sub-test will need:

• From Clause: The name of a table or view.

• SQL Query or Where Clause: Either a complete SQL statement of the format "select
count(*) from…" if no value is provided for the above (the "From Clause" field). In
case a From Clause has been provided, this field can be used to seed a where clause
in the format "condition = value".

• Logical Operator: See below.

• Validation Value 1: A value against which a logical comparison can be made to
determine if running the test was a success or failure. For example, if a value of 2
was provided and the logical operator ">" was seeded, success would imply that the
generated SQL returned greater than two rows.

2-36 Oracle Applications Supportability Guide

• Validation Value 2: If the seeded logical operator is "BETWEEN", then two values
are needed to make a comparison.

Based on the metadata, the framework will generate and execute a SQL statement. An
example of a SQL statement that could be generated is:

select count(*) from FND_GRANTS where grantee_key like ’FND_RESP6
90:21841’

In the above example, the sub-test is testing to find out the number of records in the
FND_GRANTS table that have a grantee_key of FND_RESP690:21841.

Using the Validation Value 1 (say "2") and the logical operator (say ">"), the framework
will determine if the number of records generated was greater than 2 or not.

Record
The purpose of this sub-test type is to check if the generated SQL based on the seeded
metadata returns any records or not. Developers can seed whether the SQL should
generate records or not and based on that, the Diagnostics engine will make the
appropriate comparisons.

For execution metadata, apart from the core metadata mentioned above, this sub-test
will need:

• SQL Query: A complete SQL statement.

• A Yes or No selection, indicating whether the query should generate rows or not.

An example of a SQL statement that could be generated is for this sub-test type would be:

select * from FND_APPLICATION where application_short_name = ’AOL
’

In this case, if you seed that no records be returned, the framework raises an error
condition in the case that this query returned any records.

Column
This is a more powerful sub-test type, as it allows the handling of complex SQL queries
with multiple selects across multiple tables or views. The returned values for the selected
columns are compared against the corresponding seeded validation values and logical
operators. The sub-test is considered as failed if any one of the returned values does not
meet the comparison test.

For execution metadata, apart from the core metadata mentioned above, this sub-test
will need:

• From Clause: One or more table or view names. For example, fnd_application
a, fnd_responsibility b if there are multiple tables or views to select from.

• Select Column Details: The select clause of the query to be generated uses this
metadata. Each column to be selected has the following diagnostic metadata
associated:

• Column Name: Name of columns to be selected. For example, a.application_
short_name or b.responsibility_key if there are more than one tables or views
in the From Clause.

• Logical Operator: Selected from a list of logical operators.

Developing Diagnostic Tests 2-37

• Validation Value 1: The value with which a comparison for the column’s value
should be made.

• Validation Value 2: The second value if the logical operator chosen is BETWEEN.

• Where Clause

An example to illustrate the usage of this sub-test type in the case where the metadata
stored by the developer is:

• From Clause: FND_APPLICATION_TL

Select Column Details:

Column Name: APPLICATION_ID

Logical Operator: =

Validation Value 1: 690

Where Clause: APPLICATION_SHORT_NAME = ’JTF’

In this case, the framework will generate the following SQL:

select application_id from fnd_application_tl where application_s
hort_name = ’JTF’

Each record fetched by the query will be compared for equality (=, the logical operator)
with 690.

The report generated for this sub-test type will contain the query generated by the engine
and the entire result set that the query returned to the engine.

System Parameter
The purpose of this sub-test type is to check if the JVM and system parameters at the
customer end have the desired values. In many cases, several product modules require
manual setup sub-tests that may require -D parameters. Frequently, customers to not
have those values in place. This sub-test makes it convenient to identify such issues.

For execution metadata, apart from the core metadata mentioned above, this sub-test
will need:

• System parameter name.

• The desired value.

The diagnostic engine will only make an equality comparison for the retrieved value and
the desired value. If they do not match, this sub-test is considered to have failed.

Test Container
The purpose of this sub-test is to eliminate the need to write a diagnostic Java test that is
just a container of other diagnostic test cases (called dependencies). The value-add, apart
from eliminating the need to write Java code for containers, is that you can add Java and
PL/SQL diagnostic test cases that are run sequentially by the diagnostic engine.

The report that is generated for this sub-test is a combination of all the reports generated
by the test cases included in this Test Container.

Tests are run in the sequence that they were registered in this sub-test. This is identical to
run tests that are dependencies. However, as PL/SQL and Java tests can be run at the

2-38 Oracle Applications Supportability Guide

same time, the pipelining of inputs will work only for Java test cases because PL/SQL test
cases cannot return output values at this time.

Logical Operators for Comparison
Logical Operators mentioned for all SUB-TEST TYPE definitions above can be one of the
following: <, >, <>, <=, >=, =, BETWEEN.

If the chosen logical operator is <, >, <>, <=, >=, or BETWEEN, then the assumption is that
the Validation Values are a numeric values.

If the logical operator chosen is BETWEEN, then the values will be compared as numeric
values and in the format v1 <= x <= v2, where x is the actual value and v1 and v2 are the
seeded validation values 1 and 2.

Integrating LOVs With Diagnostics
This section discusses how to add LOV inputs to diagnostic test cases. For existing
test cases, minimal changes are necessary. However, you do need to provide an
implementation for a class that extends QALovAbstract to add this functionality.

Use the following procedure to determine whether or not to use an LOV input:

1. Determine which inputs are appropriate for LOV use. Typical LOV candidates are
inputs that require non-mnemonic values and those that are constrained by other
fields.

2. Determine how and where the values of the LOV are to be retrieved. This is usually
satisfied by a database query that retrieves particular columns from a database table.

3. Extend QALovAbstract.

4. Add the LOV implementation to the test case input.

Implementing an LOV
First, you must have a class that extends the QALovAbstract class.

Developing Diagnostic Tests 2-39

package oracle.apps.jtf.regress.qatool;

import java.util.Hashtable;

public abstract class QALovAbstract implements QALovInterface {

public abstract String[] getHeaders();

public abstract String[][] getValues(Hashtable context, String
filter) throws Exception;

public abstract int getValueColumnIndex();

public String getFilterName() {
return null;

}

public String getDescription() {
return null;

}

}

• String [] getHeaders()

This method determines the names of all the columns that need to be displayed by
the LOV. If your test case needs an LOV with two columns, then you should return a
String array with two values. However, it could be the case that you do not want
to display certain columns to the user. For columns that you want to hide, you can
have their names be an empty String. Any columns that have an empty String for
a name will not be rendered.

• String [] getValues(...)

This method defines the SQL executions for your LOV data. The framework handles
the rendering. Your only tasks are to execute a SQL query/data retrieval step, handle
any unexpected errors, and return the ResultSet in the form of a two-dimensional
array. The context object will be available for the LOV implementation. It contains
all the inputs needed for the test case. If any columns are hidden, their values should
still be returned by this API.

• init getValueColumnIndex()

This method defines one of the getHeaders() columns as the index. If your test case
input is the Responsibility ID and getHeaders returns two columns (Responsibility
Name, Responsibility ID), then this method returns the index of Responsibility
ID as it serves as an input to the test case. It is valid to return the index of a
column that is hidden. In this case, the first non-hidden column in the LOV is
selectable. However, when the user clicks this value, then it will be the value of the
hidden column that is passed back to the test case.

• String getFilterName()

Implementing this API is optional. By default, the prompt that is displayed next to
the search field is the name of the test input field that this LOV is tied to. However, by
implementing this method, that prompt is whatever String this API returns.

• String getDescription()

2-40 Oracle Applications Supportability Guide

Implementing this API is optional. By default, there is no description displayed to
the user. By implementing this method, a developer can provide a description about
the LOV for users, such as an explanation of the searchable field or more details
about the type of values being displayed.

LOV Provider Sample Code
The following is an example of an LOV implementation. This class can be used for LOV
Support for any test case which depends on Responsibility ID as one of its inputs.

package oracle.apps.jtf.regress.qatool;
import java.sql.SQLException;
import java.util.Hashtable;
import java.util.Enumeration;
import oracle.apps.jtf.base.resources.FrameworkException;
import oracle.apps.jtf.aom.transaction.TransactionScope;
import oracle.apps.jtf.base.session.ServletSessionManager;
import oracle.apps.jtf.base.session.ServletSessionManager;
import com.sun.java.util.collections.ArrayList;

/**
* An example of an LOV implementation. It fetches the Responsibil
ity Names and Responsibilty ID’s
* based on the Application and User. It also allows filtering by
Responsibilty Name.
*
*/
public class RespLovImpl extends QALovAbstract {

public static final String RCS_ID = "$Header: RespLovImpl.java
115.1 2002/02/18 21:45:28 bsanghav noship $" ;

String[] heading = {"", "Responsibility Key", "Responsibility
Name"};

int valueIndex = 0;
public final String APPLICATION_ID = "APPLICATIONID";
public final String USER_NAME = "USERNAME";

/** Gets the Column headings for the LOV. The call to this me
thod should be made, preferably,

* after the getValues() method is called. Note that the firs
t element of the array is the empty

* string. This means that the column is hidden from the user
. However, this column will hold

* our Resp ID values which will populate the input.
*/

public String[] getHeaders(){
return heading;

}

/** Gives the index of the value column. Here we are returnin
g "0" which is the index of the

* hidden column that has the Resp. ID values.
*
*/
public int getValueColumnIndex(){

return valueIndex;

Developing Diagnostic Tests 2-41

}

public String getDescription() {
return "Select value by clicking on the Responsibility Key

. You can restrict the list by giving a partial" +
" Responsibility Name in the search field along with ’%’ as

a wildcard";

}

public String getFilterName() {
return "Responsibility Name";

}

public String[][] getValues(Hashtable context, String filter)
throws Exception {

Hashtable newContext = new Hashtable(context.size());
Enumeration en = context.keys();
if (en == null) throw new FrameworkException("Not enough

data supplied to get LOV.");;
while(en.hasMoreElements()){
String key = (String)en.nextElement();
if (key==null) { throw new FrameworkException("Enumerati

on gave back anull object. Something really wrong"); }
String newKey = key.toUpperCase();
newContext.put(newKey,context.get(key));

}
String appId = (String)newContext.get(APPLICATION_ID);
String userName = (String)newContext.get(USER_NAME);
int iAppId = -999999; // some non existent appid
if (appId == null) {
throw new FrameworkException("Application ID not specife

d");
} else {
try {
iAppId = Integer.parseInt(appId);

} catch (NumberFormatException pe){
throw new FrameworkException("Could not convert Applic

ation Id into a numeric value");
}

}
if (userName == null){
throw new FrameworkException("User Name not specifed");

}
try {

return getData(iAppId,userName.toUpperCase(),filter);
} catch (SQLException sqe) {
throw sqe;

} catch (FrameworkException fwe){
throw fwe;

}
}

private String[][] getData(int appId,
String userName,
String filter) throws FrameworkExce

ption,SQLException{
return getData(appId,userName,filter);

2-42 Oracle Applications Supportability Guide

}

private String[][] getData(int appId,
String userName,
String filter) throws FrameworkExce

ption,SQLException{

String queryString = "select a.RESPONSIBILITY_ID, a.RESPON
SIBILITY_KEY, a.RESPONSIBILITY_NAME from FND_RESPONSIBILITY_VL a ,
FND_USER_RESP_GROUPS b , FND_USER c where c.USER_NAME = ’" + user
Name + "’ and a.APPLICATION_ID = " + appId + " and b.USER_ID = c.U
SER_ID and a.RESPONSIBILITY_ID = b.RESPONSIBILITY_ID and a.RESPONS
IBILITY_NAME like ’" + filter +"’";

String[][] rsString = null;

rsString = Util.getTable(queryString);
heading = Util.getHeaders(queryString);
return rsString;

}
}

Incorporating LOVs in Diagnostic Test Cases
To incorporate an LOV in a diagnostic test case, you need to make a simple one line
change for every input that is to be an LOV input.

The MenuTest has been modified to plug in the LOV support to one of its inputs.

• Before using the LOV feature:

private void init() {

addInput(new QATestInput("Username", "SYSADMIN"));
addInput(new QATestInput("ApplicationID", new

Integer(TABAPPID)));
addInput(new QATestInput("ResponsibilityID",new

Integer(RESPID)));
.
.

}

• After using the LOV feature:

private void init() {

addInput(new QATestInput("Username", "SYSADMIN"));
addInput(new QATestInput("ApplicationID", new

Integer(TABAPPID)));
addInput(new QATestInput("ResponsibilityID", new

RespLovImpl()));
.
.

}

Developing Diagnostic Tests 2-43

You can always provide a default value for an LOV input using one of the overloaded
methods provided in QATestImpl. In this case:

addInput(new QATestInput("Responsibility ID", new
RespLovImpl(), "21841"));

Default LOVs
Below are some sample LOV implementations that are provided by Oracle Diagnostics
for use in diagnostic test cases.

• AppLovImpl.java

This LOV can be tied to an input that requires an application ID. Since application
IDs are not easy to remember, the LOV pairs the application’s full name with the
application ID in the LOV pop-up window. Users can filter the application ID
column using the wildcard character (%).

• RespLovImpl.java

This LOV can be tied to an input that requires a responsibility ID. The LOV requires
two parameters to be present in the LOV context hashtable: "Username" and
"ApplicationID". In order for this LOV to work, the test must have input parameters
with the exact same input names (ignoring case). When given the user name and
application ID values, it queries the database for available responsibility IDs with
their responsibility names. Users can filter the responsibility ID column using the
wildcard character (%).

• LangLovImpl.java

This LOV can be tied to an input that requires a language code from
the FND_LANGUAGES table. This LOV has three columns from the
FND_LANGUAGES table: LANGUAGE_CODE, LANGUAGE_ID, and
NLS_LANGUAGE . Users can filter based on the NLS_LANGUAGE column using
the wildcard character (%). Note that this filter is different than the value that will
actually be populated by the LOV (i.e. LANGUAGE_CODE).

• UserLovImpl.java

This LOV can be tied to an input that requires a valid user name from the FND_USER
table. This LOV pairs the USER_ID and USER_NAME columns from the FND_USER
table. Users can filter the values in the USER_NAME column using the wildcard
character (%).

PL/SQL LOVs
The following is sample code for a PL/SQL LOV:

2-44 Oracle Applications Supportability Guide

PROCEDURE getDefaultTestParams(defaultInputValues OUT NOCOPY JTF_
DIAG_INPUTTBL) IS

tempInput JTF_DIAG_INPUTTBL;
BEGIN
tempInput := JTF_DIAGNOSTIC_ADAPTUTIL.initinputtable;
tempInput := JTF_DIAGNOSTIC_ADAPTUTIL.addInput(tempInput, ’App

lication’, ’LOV-oracle.apps.jtf.regress.qatool.AppLovImpl’);
defaultInputValues := tempInput;

EXCEPTION
when others then
defaultInputValues := JTF_DIAGNOSTIC_ADAPTUTIL.initinputtable;
END getDefaultTestParams;

In order to let the Oracle Diagnostics engine catch the LOV input type, the default input
value should be in the format starting with: “ LOV-“, followed by the whole namespace
of Java class.

The Diagnostics engine parses the string value starting with “LOV-“, and gets the
namespace of the class to instantiate the LOV class.

You then implement the Diagnostics LOV java file, following the usage described in
Implementing an LOV, page 2-39. Also, you can use the default LOV classes that the
Diagnostics framework already has (oracle.apps.jtf.regress.qatool):

• AppLovImpl.class

• RespLovImpl.class

• LangLovImpl.class

• UserLovImpl.class

Oracle Applications Framework Support
Oracle Diagnostics provides APIs to load Oracle Applications Framework Application
Modules (the base class is oracle.apps.fnd.framework.OAApplicationModule) within
Java test cases based on the Application Module definition name supplied. Once
an Application Module has been loaded using Diagnostic APIs, you can introspect
ViewObjects created on a standalone basis or pulled out of an Application Module.

The two APIs that have been provided belong to class oracle.apps.jtf.regress.qatool.
OABridge and are as follows:

Secure API
static public OAApplicationModule getApplicationModule(

String username,
String appShortName,
int respID,
String amDefName) throws FrameworkException;

• This is a secure API that can only be called by a Diagnostic Super User since this
instantiates a new user context based on the username supplied.

• It uses the AppsContext of the username supplied to instantiate an
ApplicationModule based on the AM Definition Name supplied.

• It can only be called within the runTest method of a Java test case.

Developing Diagnostic Tests 2-45

Non-secure API
static public OAApplicationModule getApplicationModule(

String amDefName) throws FrameworkException;

• This is a regular API that can be called by any user.

• It instantiates the user context of the user that started diagnostics and uses the
AppsContext of that username to instantiate an ApplicationModule based on the
AM Def Name supplied.

• This too can only be called within the runTest method of a Java test case.

Sample Code
public boolean runTest() {

// app module definition name can be a user input

OAApplicationModule am
= OABridge.getApplicationModule(amDefName);

// OR use the secure API which
// instantiates a user context

OAApplicationModule am
= OABridge.getApplicationModule(username,

appShortName,
respID,
amDefName);

// Obtain view object from the app module.
// There are many ways
// one of them is using a simple query
// string which can be a query string

String qstring = "select * from fnd_application";

// Use the qstring for instantiating the
// view object

ViewObject vo =
am.createViewObjectFromQueryStmt("MyVO", qstring);

// At this point you can introspect your View objects for vali
dity.

}

Instantiation of Diagnostic User Context Within Diagnostic Test Cases
The runTest method of a Java diagnostic test case is run within a new thread that
has been spawned off for that purpose. That thread first instantiates a guest user
session. However, in many instances, the test case requires the same session as that of
the user that launched diagnostics. For achieving that, we are providing further API
support within class oracle.apps.jtf.regress.qatool.QAManager. This API

2-46 Oracle Applications Supportability Guide

can only be called inside the runTest method of the Java diagnostic test case; else an
exception will be thrown.

public static void initDiagUserContext() throws Exception;

Once this API is called, the session within the thread will be identical to that of the
session of the user that launched diagnostics.

Developing Diagnostic Tests 2-47

3
Diagnostic Security

Overview
The need for securing diagnostic test cases stems from the fact that test cases have the
ability to diagnose sensitive aspects of an application. As an example, using diagnostic
test cases customers can test shopping cart or leasing applications, check the sanity of
accounting modules, query database tables for data integrity and then render sensitive
information on all those pieces within diagnostic reports. All these operations are highly
sensitive and should be carried out by users that have been explicitly authorized.

Key Concepts

Test Group Sensitivity
Every test group that you create will have a sensitivity level associated with it. The
supported sensitivity values are low, medium, and high. Sensitivity is a function of
the type of tests that a group contains. Tests that can display reports which contain
privileged information or perform testing of sensitive aspects a product should NOT
be placed in low sensitivity test groups. It is the developer’s prerogative to pick a
sensitivity level for test groups.

Groups that are marked as medium or high sensitivity can only be executed by users
who have the appropriately privileged diagnostic roles assigned to them.

Diagnostic Roles
A diagnostic role determines the activities or tasks that a user can perform on Oracle
Diagnostics, such as:

• Running test cases (with different input values if an advanced test).

• Viewing detailed test reports after tests have been run.

• Configuring input values for test cases.

• Adding or deleting test cases and test groups across applications registered with
Oracle Diagnostics.

• Viewing historical reports for test runs.

The following are descriptions of the available diagnostics roles:

Diagnostic Security 3-1

Diagnostics Super User
Has unrestricted and global privileges for all operations on diagnostics. A user with
this role can execute, configure, view reports and setup security for all groups and all
applications.

This role is granted to the CRM Foundation application responsibility CRM HTML
Administration which has been assigned to the user sysadmin. Any one who wants to
view detailed security screens must log in as a user with that responsibility.

Application Super User
Has unrestricted and global privileges for the application associated with his or her
responsibility – that is, they can execute, configure, view reports, and set up security
for test groups across his or her own application. However, this role also permits the
user to execute and configure inputs for test groups of low and medium sensitivities
across other applications.

End User
The user with this role can execute and configure inputs for test groups of low sensitivity
only. This user cannot view detailed test reports.

Anonymous User
This is not an explicit role; if none of the user’s responsibilities have an association
with any of the above three roles, then the user is considered to be an Anonymous
user. For such users, the diagnostics engine restricts access to pseudo application "HTML
Platform". All other test groups across all other applications are restricted from this user.

Note that access to a test group can be given to any responsibility by means of an
explicit grant (using the diagnostic security screens). In the case of an explicit grant to
a test group, the user can then execute and configure inputs for tests in that particular
test group for which his responsibility has been given the grant. They can also view
detailed reports.

The table below lists the different abilities of the different diagnostic roles:

3-2 Oracle Applications Supportability Guide

Tasks Available to Diagnostic Roles

Task Diagnostic
Super User

Application
Super User

End User Anonymous
User

Use LogViewer
tab

Yes Yes No No

Perform security
configuration

Yes For test groups of
own application

No No

Configure
applications

Yes For own
application

No No

View detailed
reports

Yes Yes No No

Configure test
inputs

Yes For own
application and
low-medium
sensitivity test
groups of other
applications

Low sensitivity
test groups

HTML Platform
only

Send e-mail and
print detailed
reports

Yes Yes Summarized
reports

HTML Platform
only

HTML Platform Yes Yes Yes Yes

Underlying Security Infrastructure
Oracle Diagnostics uses Oracle Applications Object Library Data Security as its
underlying security mechanism. Oracle Applications Object Library Data Security
uses the notion of application responsibilities for administering security. For more
information about Oracle Applications Object Library Data Security, refer to the Oracle
Applications System Administrator’s Guide.

A grant is defined as a permission to access a secured entity. Grants cannot be
given to users directly. Instead, they are given to responsibilities that are assigned
to users. Thus if a grant for executing all tests in the test group "Session Tests" is
given to the responsibility "Marketing Online Executive" of the application "Oracle
Marketing Online", then all users having this responsibility in their responsibility list
will automatically have access to the test group in question. Similarly, if a responsibility
has been granted a certain diagnostic role, all users having that responsibility in their
responsibility list will have been granted that diagnostic role and will be able to use
Diagnostics pursuant to the definition of that diagnostic role.

Security Administration

Securing Test Groups
Test group security can be administered in the following ways:

• Marking them as medium or high sensitivity test groups when they are created, this
restricting them to Diagnostic Super Users or Application Super Users.

Diagnostic Security 3-3

• Assigning grants to certain responsibilities to have explicit access to test groups
irrespective of the sensitivity level of the test group. For this purpose, navigate
to Configuration > Groups > Select the appropriate group > Choose "Advanced
Security"

This will take you to the "Group Advanced Security" page, through which you can
assign access grants to various responsibilities for the test group in question.

Assigning Diagnostic Roles to Responsibilities
For this purpose, navigate to Configuration > Security > Select the appropriate diagnostic
role.

This will take you to the "Role Responsibility Assignment" page, through which you can
assign access grants to various responsibilities for the diagnostic role in question.

Session Creation / Switching User Context in Test Cases
Diagnostic tests should not seek a password from the user in order to switch the user
context.

The framework’s security model provides a mechanism for diagnostic tests to switch
user context in a programmatic and secure way. Only users who have the Diagnostics
Super User role can execute tests that require switching of user contexts.

Diagnostic tests do not accept a password as input parameter, but accept application
short name and responsibility ID (optional) as input parameters.

Within the runTest(..) method of the test, you need to use the username, application
short name and optionally the responsibilityID and invoke one of the following two
APIs to accomplish the user context switch:

/**
* This API can only be called by a Diagnostic Super User
* Since this API does not take the resp id as a parameter, it us

es the value set for
* profile option JTF_PROFILE_DEFAULT_RESPONSIBILITY for the user

name supplied.
*/

QAManager.switchUserContext(String username, String appShortName)
throws InadequatePrivilegeException, Exception;
OR

/**
* This API can only be called by a Diagnostic Super User
* This API takes the responsibility ID as a parameter explicitly
*/

QAManager.switchUserContext(String username, String appShortName,
int respID)

throws InadequatePrivilegeException, Exception;

If the user does not have a Diagnostic Super User Role assigned, then these APIs
throw an Inadequate Privilege Exception which should be caught by your runTest(...)
method. Also, you should populate the error with fix info and report parameters to

3-4 Oracle Applications Supportability Guide

reflect why the SwitchContext operation failed. This is illustrated in the code sample
below.

/**
* SAMPLE CODE FOR WHAT SHOULD BE USED IN THE RUNTEST METHOD FOR
* SESSION CREATION
*/

try {

// THIS IS THE APPROPRIATE WAY TO SWITCH USER CONTEXT
QAManager.switchUserContext(username,

AppUtil.getAppShortName(tabAppID),
respID);

}catch(InadequatePrivilegeException e){

error = "Inadequate privileges to call this test.
“
+ ”Please login using superuser access level “
+ “(Resp: JTF_ADMIN_USER)";

fixInfo = "";
report = e.getMessage();
return false;

}
catch (Exception e) {

error = "Session cannot be started.";
fixInfo = "";
report = e.getMessage();
return false;

}

Diagnostic Security 3-5

4
Diagnostics Result Reporting

Overview
The following information is recorded in the database whenever a test is run through
Oracle Diagnostics:

• A result, with the test execution information.

• Statistical information, such as how many times a test has been run, the total number
of failures, etcetera.

Storing test results in the database allows for querying and analysis of the test
information. For example, you could find out which tests have failed in the last 24
hours. The statistical information captures summary information about the health of
the system.

Database Failover
If the database is down (that is, cannot be read from or written to), then report entries are
stored locally on the file system. All test results for that diagnostic session go to the file
system, even if the database comes up at some point in the session. If the database stays
up, then the log entries will go to the database the next time a session is started.

Report files are only created if the database is down. In this case, they are generated in
the directory specified by the following -D parameter to the JServ:

-Dframework.Logging.system.filename=<some writable directory>

This directory must be writable. When the database is down, there will be one file per
diagnostic session.

Accessing Result Logs
You can view result entries for a tests which have been executed in the current diagnostic
session. There are a three ways to access the test result information in the UI:

• Click the test name when viewing all the basic tests in a group.

• Click View Report when viewing an test run in advanced mode.

• Click Report after a test has been executed in basic or advanced mode.

Note that this result information is from tests that have been executed in the current
diagnostic session. If you leave Oracle Diagnostics and then re-enter it, you can no
longer see the result entries from prior sessions.

Diagnostics Result Reporting 4-1

Test result entries are stored in the JTF_DIAGNOSTIC_LOG table. The statistical
information is stored in the JTF_DIAGNOSTIC_STATS table.

Purging Result Logs
It is good practice to periodically purge result entries to prevent the table from growing
too large. Each test that is run results in a new row in the test result table. These entries
are not automatically cleared, so the table will keep growing without bound as more
tests are run over time.

The statistics table will not grow very large since its size is based on the number of tests
registered, not the number of times these tests have been executed. However, since
the statistics information keeps a running record of different metrics (e.g., number of
failures) it is important to refresh this information to keep the statistics relevant to the
state of the system.

Test result and statistic entries can be removed from the database by navigating to
Configuration > Applications. The bottom of the screen shows all the result and statistic
entries for the application for all sessions. Deleting the result entries, removes all the log
entries which have been created for this application, regardless of session. Note that this
includes the current diagnostic session.

This page only shows the result entries in the database, and only deletes the log entries
in the database. If any result files have been generated by diagnostic sessions (if the
database was down), then they have to be manually deleted by going the directory
specified by the -Dframework.Logging.system.filename parameter.

Scheduling Routine Purging

Deleting Diagnostic Logs
You can use the concurrent program "Delete Diagnostic Logs" to delete all Oracle
Diagnostics test reports that are older than a given number of days for one or more
applications. The application list is specified as a space-separated list of application
short names to the concurrent program. The number of days threshold is specified as
another input argument to the concurrent program. A value of "0" causes all logs to be
deleted, regardless of age. The program can be executed through Oracle Applications
Manager or through the Oracle Forms UI for submitting Concurrent Program Requests.

Deleting Diagnostic Statistics
You can use the concurrent program "Delete Diagnostic Stats" to delete all the statistics
that have been collected about Oracle Diagnostics test executions. This program can be
run in the same way as "Delete Diagnostic Logs".

Historical Logs: LogViewer
Oracle Diagnostics provides the ability to query the repository of diagnostic test
logs in the database. However, access to the LogViewer is restricted to users with
the Diagnostic Role "Diagnostic Super User". For details, see Diagnostic Security,
page 3-1. To authorized users, the LogViewer subtab displays on the Home tab. The
LogViewer allows users to query for logs based on multiple criteria, including
dates, applications, test groups, sessions, test result status, etc. Apart from this, the
diagnostic homepage renders a bin which displays test failures from the past
week. Authorized users can drill down to detailed failure reports from this bin.

4-2 Oracle Applications Supportability Guide

The LogViewer allows users to do the following:

• view one log per page, and drill down to a specific test log

• save a single log or multiple logs (combined in a ZIP file) to local machine and then
upload the saved logs to OracleMetalink using the Save and Upload to Support
buttons

Microsoft Excel Reporting for Diagnostics PL/SQL Test Results
If the results of a PL/SQL test represent the results of a database query, then those query
results can be converted toMicrosoft Excel spreadsheets. A button at the top of the results
page for such a test is provided for the conversion. By selecting this button, a user will be
directed to Diagnostics Excel Reporting page where the query results are displayed in an
Excel format. The Excel spreadsheets can then be uploaded to OracleMetalink.

Diagnostics Result Reporting 4-3

5
Launching Oracle Diagnostics

Overview
Oracle Diagnostics is available to users in more than one way. This chapter discusses
how to access the different user interfaces that are available, as well as what can be
accomplished in each of them. In summary, Oracle Diagnostics can be accessed in the
following ways:

• Standalone HTML User

• CRM System Administrator Console

• Oracle Applications Manager

• Command-line Console

Standalone Diagnostics
Most Diagnostics users will enter the application using this method.

Access

Function Security and Standalone Diagnostics
Oracle Diagnostics also releases its standalone version, which has the minimum code
dependency and can be installed in Oracle Applications Systems 11i.6 to 11i10. This
standalone version utilizes Oracle Application Object Library function security.

By default, two responsibilities, CRM HTML Administration and System
Administration, have this seeded Diagnostics menu associated with them. A user with
the CRMHTML Administration responsibility can access Oracle Diagnostics by selecting
the "Diagnostics" link under the "Setup" menu. A user with the System Administration
responsibility can access Oracle Diagnostics by selecting the "Diagnostic Tests" link
under the "Diagnostics" menu.

In Oracle Diagnostics version 2.4, the Diagnostics JSP pages menu is associated
with a new seeded responsibility, Oracle Diagnostics Tool. For details of how
to assign this responsibility to user, please see: Diagnostics Responsibility
Configuration, OracleMetaLink Note 358831.1. After this assignment, the user should
be able to log in via the Oracle Applications Login page and access the Diagnostics JSP
pages from this responsibility.

Launching Oracle Diagnostics 5-1

Logging In
The Standalone Diagnostics entry point to Diagnostics can be reached by going to the
following URL:

http://<host>:<port>/OA_HTML/DiagLogin.jsp

This URL will redirect to Applications Login page. After the user logs in, the user will
be directed to the Oracle E-Business Suite Navigator page. Oracle Diagnostics can be
accessed from the appropriate responsibility.

Features
With the Diagnostics Security Framework in version 2.1 and later, anyone entering
Diagnostics using this method is given whatever Diagnostic Role is granted to the Guest
User’s responsibilities. You should grant the Guest User the "End User" Diagnostic
Role if you want the Guest User to be able to do more than work only with the HTML
Platform. For details about Diagnostic Roles, see Diagnostic Security, page 3-1.

Typically, this user will not be able to configure Oracle Diagnostics or view detailed test
reports. In order to perform these functions, the user needs to access Diagnostics using
the CRM System Administrator Console or through Oracle Application Manager.

Diagnostics 2.4 includes the following features:

• Search Tests: Users can search for tests using specific keywords on the Diagnostics
home page.

• Batch Processing: A user can choose diagnostic tests across multiple applications and
configure input for the tests together as needed, and then run those tests together.

• Diagnostics Test Sets: A test set is a set of tests written within a XML file. Input
parameters supplied for the test set is included within the tests themselves. A test
set can be directly run without any user interaction of selecting tests and specifying
input. A user can:

• search, view, and run the test sets shipped by Oracle Applications.

• generate a test set by using the “Batch Processing” pages, and save the test set
to a local PC.

• upload a test set from a local PC to run it directly. The test set itself may be
downloaded from OracleMetaLink or generated by the user beforehand.

• After a user executes Diagnostics tests from “Basic Tests” page or “Advanced
Tests” page, the user can save the test result and then upload the test report to an
OracleMetaLink note. These actions can be performed from the test report page using
the Save and Upload to Support buttons.

After a user executes Diagnostics tests from “Batch Processing” page, the user
can save multiple reports as a ZIP file to a local machine, and then upload the
ZIP file to OracleMetalink using the Save All Reports and Upload to Support
buttons, respectively.

• From the LogViewer page, a user can save a single log or multiple logs (together as a
ZIP file) to a local machine and upload the file to OracleMetalink.

5-2 Oracle Applications Supportability Guide

Bookmarking Pages in the Diagnostics UI
Oracle Diagnostics supports bookmarking of diagnostic pages. Bookmarking is the
saving of URLs as "Favorites" or "Bookmarks" in the browser. Since bookmarking
captures the URL on the browser, users can quickly navigate to the URL.

Remember that Oracle Diagnostics relies on several session and form post parameters
which may not show up on the URL. In cases where the Diagnostic engine can find
the relevant information through the URL, the appropriate diagnostic page will be
displayed. In all other cases, it will default to the Diagnostics homepage. If the user
session has expired, diagnostics will start a guest user session -- the guest user may
not have the appropriate responsibility to view the information being sought. In such
cases, you should authenticate yourself before using diagnostic-related bookmarks.

CRM System Administrator Console
Administrator-level users that need to configure Oracle Diagnostics or view sensitive
data in the detailed test reports should enter using this method or through Oracle
Applications Manager. The CRM System Administrator Console can be navigated to
through the following URL:

http://<host>:<port>/OA_HTML/jtflogin.jsp

Clicking the Diagnostics tab will launch the Oracle Diagnostics user interface.

Features
Depending on the users’ responsibilities, they will be assigned a diagnostics role. In
order to have unrestricted access to all diagnostics features such as configuration and
viewing test details, a user must have the Super User Diagnostics Role. For details, see
Launching Oracle Diagnostics, page 5-1.

Oracle Applications Manager
Select features of Oracle Diagnostics appear in Oracle Applications Manager
(OAM). Through the OAM UI, the application administrator can view diagnostic test
execution statistics as well as detailed log reports. If the application administrator needs
to perform other Oracle Diagnostics functions, he or she can launch the standard Oracle
Diagnostics UI from OAM.

Oracle Diagnostics has been integrated with OAM version 2.2 and above.

Finding Oracle Diagnostics in OAM
Log in to Oracle Applications Manager. After successfully logging in, you will reach the
OAM dashboard.

The entry point to Oracle Diagnostics is at the Diagnostics subtab in the dashboard.

Diagnostics Test Summary
Clicking the Diagnostics subtab displays summary information about diagnostic tests
executed on the environment using Oracle Diagnostics.

Launching Oracle Diagnostics 5-3

The diagnostic test results are categorized by applications and then by groups within
applications. By default, Failures in Past Week is displayed. This means that only those
tests that failed within the last seven days are shown. You can filter the data by choosing
to View only the failures within the last 24 hours or see all the tests regardless of when
they last failed, or if they even have failed at all. Clicking on the Expand All link will
display the entire hierarchy.

The Status column of the table reflects a rolled-up status for all the entities in the
hierarchy. For instance, the status icon for a group is the worst status of all the statuses
for the tests in that group, and that for an application is the worst status among all
the groups within that application. The status of a test is determined by the last time
the test was executed. The Last Failure Time and Last Execution Time columns have
values only for individual tests.

Clicking on the Status icon will show the details of that test’s last execution.

Refreshing the Summary Data
Clicking on the refresh icon next to the Last Updated time will retrieve the latest
Diagnostic summary data from the database. Summary data will only be refreshed upon
logging into OAM or by explicitly clicking the refresh icon. Also, each view is refreshed
separately and has its own Last Updated time. For example, refreshing data for the
Failures Today view will not retrieve new data for the All view.

Diagnostic Test Details
This page shows the detailed report generated when the test was last executed. If the
test has had a failure, then you can also select to view the last failure by selecting Last
Failure then clicking Go. The information displayed is composed of all the familiar
elements Diagnostic log report.

Using the Support Cart
If the issue is a failure that cannot be resolved you can add the details to the OAM
Support Cart. The Support Cart lets you store important screen shots that you can
include when filing a TAR. To do this, click on the Add to Support Cart button at the
top of the screen. This will be followed by a confirmation screen stating that the page
has been successfully added to the Support Cart. Clicking OK will return you back
to the test details page.

To see all the items you have placed in the Support Cart. Click the Support Cart icon at
the very top of the screen. You will see all the screen captures for this session.

Those captures that have the name oam/diagfwk/testDetails correspond to Diagnostic
test details. Clicking on the View icon will show the screen capture. Clicking on the
Save Cart button will allow you to save the entire cart as a zip file to be included with
your TAR.

Launching Oracle Diagnostics from OAM
Clicking on the Launch Diagnostics button in either test summary or test details page
will pop up a new window containing the full Oracle Diagnostics UI. In the Oracle
Diagnostics window, you can run tests and perform all other operations that are
normally permitted through Oracle Diagnostics.

5-4 Oracle Applications Supportability Guide

Command-line Console
The command-line console is typically used during development or during installation
when a system administrator needs to run regression tests to verify if different aspects of
the system are still functioning after a patch has been installed.

Naturally, you will not be permitted to access any "Configuration" functionality over the
Command-Line Console, since you are implicitly authenticated as a guest user. This is
necessary to keep the data registered with the framework secure.

Oracle Diagnostics can be launched in command-line mode using this command:

java -DJTFDBCFILE=<dbc file> -Dframework.Logging.system.filename=
<framework logfile>
-Dservice.Logging.common.filename=<service logfile> oracle.apps.jt
f.regress.qatool.QAConsole

You need to do the following in this command:

• Specify the .dbc file.

• Specify the locations of the framework and service log files.

• Ensure that the classpath being used has the JAVA_TOP, jdbc12.zip, and jsdk.jar.

Scheduling Batch Diagnostics
When performing maintenance or verification tasks, you can schedule diagnostic tests to
run in batch mode. The concurrent program "Run Diagnostic Tests" is provided for this
purpose. You can set up this program through Oracle Applications Manager or Oracle
Forms. "Run Diagnostic Tests" can scheduled to execute a single test, a group of tests, or
all groups of tests that are registered under an application.

When using Oracle Applications Manager to set up scheduling tests, use the navigation
path Site Map > Concurrent Requests > Submit New to access the scheduling wizard. In
the first page of the wizard, search for "%Diag%", and select "Run Diagnostic Tests". In
the next page use the LOV to select the test application, and optionally, enter group
name and test name to schedule the tests.

Launching Oracle Diagnostics 5-5

6
Logging Framework Overview

Overview
The Oracle Applications Logging Framework provides the ability to store and retrieve
log messages for debugging, error reporting, and alerting purposes.

You can set up, view, and purge log messages through HTML-based user interface
pages that are located in Oracle Applications Manager. For more information about
these pages, refer to the Oracle Applications System Administrator’s Guideor the Oracle
Applications Manager online help.

Target Audience
The target audience of this and other chapters related to logging are as follows:

System Administrators
As a system administrator, you should monitor alerts and log messages to manage
system activities and troubleshoot problems.

Application Developers and Consultants
You can use this manual to learn how to add alerts and log messages to your
code. Also, you can review log messages for debugging purposes.

Key Features
• All Oracle Applications log messages are stored in a central repository.

• Messages can be correlated across middle-tier and database servers.

• Autonomous transactions are used to log to the database.

• Context information is captured internally to facilitate the analysis of messages.

• Configurable System Alerts allow for e-mail and pager notification.

• Messages can have attachments up to 4 GB in size.

• Implementations in Java, PL/SQL, and C.

• Multiple ways to control which messages are logged:

• Set Oracle Applications Object Library (FND) profiles in the database to turn on
logging, based on the application user, responsibility, application, or site.

Logging Framework Overview 6-1

• Set the logging level to control which messages are logged, based on their
severity. There are six severities, ranging from STATEMENT (least severe) to
UNEXPECTED (most severe).

• Filter log messages by source module. Use of a wildcard character (%) is
supported.

• Turn on logging for individual processes.

• Turn on logging for individual threads within a JVM.

Terminology

Log Message
A complete log message has a set of message identifiers and the actual text of the log
message. The only identifiers that developers must provide are the message, module, and
severity. Everything else is automatically captured by the Logging Framework.

Log messages include the following:

• Time Stamp: The time the message was recorded.

• Log Sequence: A unique sequence number internally generated for the message.

• User ID: A unique identifier for the application user (foreign key to FND_USER).

• Responsibility ID: The user’s current responsibility (foreign key to
FND_RESPONSIBILITY).

• Application ID: The user’s current application (foreign key to FND_APPLICATION).

• Session ID: A unique identifier for the application user session (foreign key to
ICX_SESSIONS).

• Transaction ID: A unique identifier to identify the runtime context of the
application. Four different transaction types are currently supported:

• Concurrent Program (CP): the CP ID (foreign key to FND_CONCURRENT_
PROGRAMS), Request-Id (foreign key to FND_CONCURRENT_REQUESTS)
are automatically captured.

• Form Function: the Form ID (foreign key to FND_FORMS), Function-Id (foreign
key to FND_FORM_FUNCTIONS) are automatically captured.

• ICX: the ICX Session ID (foreign key to ICX_SESSIONS) and ICX Transaction-Id
(foreign key to ICX_TRANSACTIONS) are automatically captured.

• Service: the Process ID (foreign key to fnd_concurrent_processes), Concurrent-
Queue ID (foreign key to fnd_concurrent_queues) are automatically captured.

• Node: The host name of the machine where the message was generated.

• Node IP Address: The IP address of the machine where the message was generated.

• JVM ID: A unique identifier for the Java process where the message was generated.

• AUDSID: A unique identifier for the database connection (userenv(’SESSIONID’)).

• Process ID: A unique identifier for the database process (v$session.Process).

• Thread ID: A unique identifier for the thread within the Java process where the
message was generated.

6-2 Oracle Applications Supportability Guide

• Severity: One of six predefined values that indicate the importance of the
message. See the full definition below.

• Module: Represents the source of the message. Typically in Java this is the full class
name. When a class name starts with "oracle.apps", then the leading "oracle.apps."
is dropped in the logged message. For example: "oracle.apps.jtf.util.Encoder" is
logged as "jtf.util.Encoder".

• Message Text: The descriptive body of the message. 4000 bytes is the maximum
length currently supported. Please accommodate for multibyte characters
appropriately. If additional space is required, then log attachments of up to 4 GB
can be added.

Module Filter
A module filter is an optional comma-delimited list of strings that you can configure
to perform logging for specific modules. You can use a wildcard (%) if desired. For
example: "fnd%, jtf%, store%, cart%".

Severity
Each log message belongs to one of the following six severities (listed from least severe to
most severe): 1-STATEMENT, 2-PROCEDURE, 3-EVENT, 4-EXCEPTION, 5-ERROR, or
6-UNEXPECTED.

Logging Level
A logging level is a threshold that you can set to control the logging of messages. You can
set the logging level to any of the six severities defined above. When you set a logging
level, only messages that have a severity greater than or equal to the defined level are
logged. For example, if you set the logging level to 5-ERROR, then logging occurs for
messages that are 5-ERROR and 6-UNEXPECTED. If you set the logging level to the
lowest severity, 1-STATEMENT, then messages of all six severities are logged.

Logging Conguration Parameters

Overview
The following parameters govern logging:

• AFLOG_ENABLED

Specifies if logging is enabled or not. The default value is NULL (False).

• AFLOG_LEVEL

Specifies the logging level. The default value is NULL (Log.UNEXPECTED).

• AFLOG_MODULE

Specifies which modules are logged. The default value is NULL (%).

• AFLOG_FILENAME

Specifies the file where middle-tier log messages are written.

These parameters can be set as middle-tier properties, Oracle Applications Object
Library (FND) profile option values, or a combination of both. Middle-tier properties are
set using Java system properties or C environment variables. The middle-tier settings

Logging Framework Overview 6-3

take precedence over database settings. This allows you to control logging globally from
the database, or locally from the middle tier.

If a parameter is not set as either a middle-tier property or an Oracle Applications Object
Library (FND) profile option value, then the default value is used. The middle-tier
properties only affect the middle-tier logging, and do not affect the database (PL/SQL)
layer logging.

Each log message has an associated module and level, which are determined by the
author of the message. Whether a log message is actually logged during an enabled
instance (AFLOG_ENABLED=TRUE) depends on how the message’s level and module
compare to the settings of AFLOG_LEVEL and AFLOG_MODULE. The message’s level
must be greater than or equal to the value of AFLOG_LEVEL, and the module must
match the filter AFLOG_MODULE.

Detailed descriptions of the logging parameters follow.

AFLOG_ENABLED
AFLOG_ENABLED determines if logging is enabled. In the database tier, the possible
values are "Y" and "N". In the middle tier, the possible values are "TRUE" and "FALSE".

If AFLOG_ENABLED is set to "FALSE" using middle-tier properties, then no logging
occurs in the middle tier. If AFLOG_ENABLED is set to "N" using Oracle Applications
Object Library (FND) profiles, then no logging occurs in the database tier.

If AFLOG_ENABLED is set to "TRUE", then log messages of the appropriate level and
module will be logged either to the database or to a file. Since parameter values set
as middle-tier properties take precedence over values set as database profile option
values, logging can be globally enabled or disabled for a specific middle-tier process
using properties. For example, to completely disable middle-tier logging in a JVM, use
"-DAFLOG_ENABLED=FALSE".

For example:

/local/java/jdk1.2.2/bin/java -DAFLOG_ENABLED=FALSE org.apache.js
erv.JServ

When AFLOG_ENABLED is set in this way, it overrides any value set using database
profile option values.

Likewise, logging can be globally enabled. If "-DAFLOG_ENABLED=TRUE" is
used, logging will be enabled, even for users whose database profile option value for
AFLOG_ENABLED is "N".

The following table shows how middle-tier parameters take precedence over database
profile option values:

6-4 Oracle Applications Supportability Guide

Middle Tier Values versus Database Tier Values

Database Tier Value Middle Tier Value Result

Y TRUE Logging occurs in both the
middle tier and the database.

Y FALSE Logging occurs in the database
only.

N TRUE Logging occurs in the middle
tier only.

N FALSE No logging occurs.

AFLOG_LEVEL
AFLOG_LEVEL specifies the logging level. In order to be logged, messages must have a
severity greater than or equal to the value of AFLOG_LEVEL.

Any values set using middle-tier properties take precedence over profile option values
set in the database. For example, the logging level could be set to "EXCEPTION" in
the system properties as:

/local/java/jdk1.2.2/bin/java -DAFLOG_LEVEL=EXCEPTION org.apache
.jserv.JServ

The following table lists the supported logging levels for failure reporting:

Logging Framework Overview 6-5

Logging Levels for Failure Reporting

Logging Level Value Meaning Audience Examples

Unexpected 6 Indicates an
unhandled
internal software
failure. (Typically
requires code or
environment fix.)

System
administrators
at customer
sites, and Oracle
development and
support teams.

"Out of memory."
"Required file
not found." "Data
integrity error."
"Configuration
error; required
property not set,
cannot access
configuration
file." "Failed
to place new
order due to DB
SQLException.
" "Failed to
obtain connection
for processing
request."

Error 5 Indicates an
external end user
error. (Typically
requires end user
fix.)

System
administrators
at customer
sites, and Oracle
development and
support teams.

"Invalid username
or password."
"User entered a
duplicate value
for field."

Exception 4 Indicates a
handled internal
software failure.
(Typically
requires no fix.)

Oracle
development and
support teams.

"Profile not found.
" "Session timed
out." "Network
routine could not
connect; retrying"

The following table lists the supported logging levels for progress reporting:

6-6 Oracle Applications Supportability Guide

Logging Levels for Progress Reporting

Logging Level Value Meaning Audience Examples

Event 3 Used for high-
level progress
reporting.

Oracle
development and
support teams.

"User
authenticated
successfully."
"Retrieved user
preferences
successfully."
"Menu rendering
completed."

Procedure 2 Used for API-
level progress
reporting.

Oracle
development and
support teams.

"Calling PL/SQL
procedure XYZ.
" "Returning
from PL/SQL
procedure XYZ."

Statement 1 Used for low-
level progress
reporting.

Oracle
development and
support teams.

"Obtained
Connection
from Pool."
"Got request
parameter." "Set
Cookie with
name, value."

AFLOG_MODULE
Module names have the following form:

<application short name>.<directory>.<file>.<routine>.<label>

For example: "fnd.common.AppsContext.logOut.begin", where <application short name>
= "fnd", <directory> = "common", <file> = "AppsContext", <routine> = "logOut", and
<label> = "begin".

The Java framework write methods that take a "Class" or "this" Object
as a parameter automatically construct the module from the name of the
Class. For example, if a log message is being written from an instance of
"oracle.apps.fnd.common.AppsContext.class", then the module name will be
"fnd.common.AppsContext". Note that the leading "oracle.apps" is always dropped.

The AFLOG_MODULE parameter is a filter against which the module names
of log messages are compared. The percent sign (%) is used as a wildcard
character. To select all modules, set AFLOG_MODULE to "%". To only log messages
from the Class oracle.apps.fnd.common.AppsContext, set AFLOG_MODULE to
"fnd.common.AppsContext%".

AFLOG_FILENAME
The default value is NULL (Log to database. If database logging fails, then log to the
default file ./aferror.log).

AFLOG_FILENAME specifies the file where middle-tier log messages are written. If a
filename is specified as a middle-tier property, then middle-tier log messages are written
to that file. Messages at the PL/SQL layer are always logged to the database table.

If a filename is not specified as a middle-tier property, then the following occurs:

Logging Framework Overview 6-7

• If the database profile option value for the filename is not set in the database or is
inaccessible due to an error, then the log messages are written to the default file
(aferror.log).

• If the database profile option value for AFLOG_FILENAME is accessible, then the
database value is read.

• If the database profile option value is null, then messages are logged to the database.

• If the database profile option is not null, then messages are logged to the specified
file.

If the middle-tier process does not have write permission on the specified file, then it
logs to the default file. If it cannot write to the default log file, then it writes log messages
to STDERR.

If the full path is not specified in the filename, then the path is considered as relative to
the current working directory.

If a separate log file for each middle-tier process is needed, then give each process a
middle-tier property value for AFLOG_FILENAME.

AFLOG_ECHO
In addition to the four standard log parameters described above, AFLOG_ECHO is
available only in the Java tier. It is used to send log messages to STDERR.

If -DAFLOG_ECHO=TRUE and logging is enabled, then all filtered messages are also
logged to STDERR in addition to the configured file or database.

6-8 Oracle Applications Supportability Guide

7
How to Congure Logging

Using Middle-tier Properties to Congure Logging
All middle-tier property settings take precedence over profile option settings in the
database. Logging setup is often done by setting the Apache JServ system properties
in the jserv.properties file. This is a quick way to turn on logging for all sites or
users, regardless of the current profile option settings. Middle-tier properties only affect
middle-tier settings. They do not affect logging at the PL/SQL layer.

Using Java
You can define Java system properties to control logging for each JVM.

The following examples show how to turn on logging for all modules and levels using
Java system properties. We assume that the JVM has write permission for the file
"/path/to/apps.log". As needed, you can substitute any other file to which the JVM has
write permission.

If you plan to log to a file, it is strongly recommended that you override the default file
"aferror.log". This default does not specify a full file path and in some cases may not be
writable by the middle tier process. Therefore, you should explicitly specify a value
for the parameter AFLOG_FILENAME.

Using Command Line JVM System Properties
To enable logging for an application (for example, MyClass) that is run from the
command line, add the following parameter values to the command line:

/local/java/jdk1.2.2/bin/java
-DAFLOG_ENABLED=TRUE -DAFLOG_LEVEL=STATEMENT \
-DAFLOG_MODULE=% -DAFLOG_FILENAME=/path/to/apps.log MyClass

Using Apache JServ JVM System Properties
To enable logging using Apache JServ JVM system properties, add the following to
the jserv.properties file:

wrapper.bin.parameters=-DAFLOG_ENABLED=TRUE
wrapper.bin.parameters=-DAFLOG_LEVEL=STATEMENT
wrapper.bin.parameters=-DAFLOG_MODULE=%
wrapper.bin.parameters=-DAFLOG_FILENAME=/path/to/apps.log

In this case, the log directory used by JServ is a convenient location for the log file.

How to Congure Logging 7-1

Using C
You can define environment variables to control logging for each C process.

The following example shows how to turn on logging for all modules and levels using
C environment variables. In these examples, we assume that the C process has write
permission for the file "/path/to/apps.log". As needed, you can substitute any other file
that the JVM can write to.

Note that the default value of the AFLOG_FILENAME parameter does not specify a
full file path. Therefore, in some cases this file may not be writable by the middle-tier
process. If you plan to log to a file, it is strongly recommended that you explicitly
override the default file "aferror.log". To do so, specify a value for the parameter
AFLOG_FILENAME.

!#/bin/csh
setenv AFLOG_ENABLED Y
setenv AFLOG_LEVEL STATEMENT
setenv AFLOG_MODULE %
setenv AFLOG_FILENAME /path/to/apps.log
./C-Executable

Using Database Prole Options to Congure Logging
You can configure logging by setting database profile options. The following table lists
profile option names and sample values:

Database Prole Options

Prole Option Name User Specied Name Sample Value

AFLOG_ENABLED FND: Debug Log Enabled "Y"

AFLOG_MODULE FND: Debug Log Module "%"

AFLOG_LEVEL FND: Debug Log Level "ERROR"

AFLOG_FILENAME FND: Debug Log Filename "/path/to/apps.log"

The available levels are Site, Application, Responsibility, and User. User settings override
Responsibility settings, Responsibility settings override Application settings, and
Application settings override Site settings.

To emphasize this point, the following is a summary of the impacts of the different
profile option levels:

• User: Affects only the given user.

• Application: Affects all users for the specific application.

• Responsibility: Affects all users in any application for that responsibility.

• Site: Affects all users, applications, and responsibilities.

Note: When setting up logging at the Site level, we strongly
recommend that you set the logging level to UNEXPECTED. ERROR
or EXCEPTION are also possibilities. We strongly discourage

7-2 Oracle Applications Supportability Guide

setting the logging level for a site to anything other than
UNEXPECTED, ERROR, or EXCEPTION.

Using Logging to Screen
In addition to the above methods where log messages are written to a file or the
database, Logging to Screen provides:

• The ability to enable logging on a per HTTP request or per HTTP session basis.

• Dynamic configuration which does not require restarting any servers or changing
any log profiles.

• A convenient lightweight mechanism to diagnose performance issues. Each message
is timestamped to the millisecond.

If Logging to Screen is enabled, then the Java log messages generated for a particular
HTTP Request-Response are buffered in memory and appended to the end of the
generated HTML page.

This feature does not affect any existing configurations of file or database logging. File
or database logging continues to behave per the configured middle tier log properties
and/or log profile values.

Note that this mechanism currently provides only Java layer messages. Regular file or
database logging should be used if messages from other layers (e.g., PL/SQL) are needed.

Enabling Logging to Screen in Oracle Application Framework Pages
For security reasons, this feature is only accessible if the "FND: Diagnostics" Profile
is set to "Yes".

Use the following procedure to enable Logging to Screen in pages based on the Oracle
Application Framework:

1. Click the Diagnostics button.

2. Select Show Log to Screen from the drop-down list.

3. Choose an appropriate log level.

4. Optionally, enter a module filter criteria such as jtf*. [In URLs, use the asterisk
symbol (*) as a wildcard character, not the percent sign (%).]

Enabling Logging to Screen in CRM Technology Foundation Pages
For security reasons, this feature is only accessible if the "FND: Diagnostics" Profile
is set to "Yes".

To enable logging to screen in pages based on the CRM Technology Foundation, append
the following to the page’s URL:

jtfdebug
Specify the logging level that should be displayed on the current screen.

jtfdebuglter
(Optional) If desired, this parameter can be used as a filter to display messages based
on a Java package name.

How to Congure Logging 7-3

For example: <current_url>&jtfdebug=STATEMENT&jtfdebugfilter=jtf*

[In URLs, use the asterisk symbol (*) as a wildcard character, not the percent sign (%).]

Startup Behavior
At startup, applications do not have access to profile values. If middle-tier properties are
not set, then at startup, the system defaults to logging as follows:

• Logs are stored in the file aferror.log (in the current directory).

• Logs are stored at the level UNEXPECTED.

• Logs are stored for all modules.

After a connection to the database has been established, the site-level log profiles are
read. When the user, responsibility, and application have been established, the Oracle
Applications Object Library (FND) profiles are read for that user.

For Java and PL/SQL applications, the logging system is initialized by
FND_GLOBAL.INITIALIZE (which is called from APPS_INITIALIZE), which is called
normally as part of the startup of every Java application session, form, report, or
concurrent program. At that point, it has user information and will log with the proper
user profiles. Before the FND_GLOBAL.INITIALIZE, if the logging system is called it
will self-initialize and log with the site- level profile values.

For Java applications, this is the sequence of startup steps:

1. If any of the log parameters are set as Java system properties, then use them.

2. Logging is not disabled using the Java system property AFLOG_ENABLED=FALSE,
and if any of the remaining log parameters are not set as system properties, then
retrieve the corresponding Oracle Applications Object Library (FND) profile option
values from the database. User-level profile values override responsibility-level
profile values, which override application-level profile values, which override
site-level profile values.

3. If any of the log parameters are not set either as system properties or as profile
values (or they are not accessible due to an error), then use the default values.

7-4 Oracle Applications Supportability Guide

8
Logging Guidelines for System

Administrators

Overview
Set up your system for logging according to the following guidelines. We recommend
that you use Oracle Applications Manager as the user interface for any log management
tasks.

Note: To optimize performance, if your Oracle Applications system is at
Release 11.5.9 or earlier, then it is recommended that you fully disable
logging. Instructions for disabling logging are provided in this chapter.

Recommended Default Site-Level Settings
For normal operations, we recommend that you configure your system as follows:

• Enabled: On

• Logging Level: UNEXPECTED

• Log Repository: Database

• Module Filter: %

Caution: If you set the default site-level logging level to
STATEMENT or PROCEDURE, a decrease in system performance
could result. Under that configuration, the large amount of
generated log messages might significantly slow down the
system. Furthermore, if the site-level logging level is set to a low
severity for a long time, then the FND_LOG_MESSAGES table could
potentially run out of space.

Recommended Settings for Debugging
If you need to lower the logging level in order to gather information about a system
error, use the following recommended configurations. (As stated above, the default
logging level should be UNEXPECTED. This maintains optimum system performance.)

Using Logging to Screen
For Java-based pages that are based on the Oracle CRM Technology Foundation or the
Oracle Applications Framework, if you have access to the browser that is displaying the

Logging Guidelines for System Administrators 8-1

generated HTML, you can use the Logging to Screen feature to view further details if an
error is reported. See: Using Logging to Screen, page 7-3.

This lightweight mechanism works best in cases where:

• You are interested in Java layer messages only.

• Debugging of is required for a particular request-response. For example, a JSP
request from a browser.

• Debugging is required for all request-responses within a specific session.

Pinpointing an Error to a Specic User
You can use Oracle Application Object Library profiles to enable logging for the specific
user, responsibility, and application that were active when the error occurred. Ask the
user to log in again for the profile changes to take effect. Remember to return the profiles
to their usual values after debugging has been completed.

If you suspect that certain code is causing the problem, then use hierarchical module
filters to restrict which messages are logged. For example: fnd.common.%

Set the logging level according to the appropriate level of detail. Recall that EVENT
messages report key progress events, while EXCEPTION, ERROR, and UNEXPECTED
messages report failures.

For High Volumes
For high load, high volume scenarios, you can log middle-tier messages to a
local file, which is faster than logging to a remote database. To do so, define the
AFLOG_FILENAME property to write all middle tier logging to a local file. Be sure to
limit the number of generated messages:

• Use Oracle Applications Object Library FND Profiles to restrict logging according to:

• Specific users

• Specific responsibilities

• Specific applications

• If you suspect that certain code is causing the problem, then use hierarchical module
filters to restrict which messages are logged. For example: fnd.common%

• Set the logging level according to the appropriate level of detail. Recall that
EVENT messages report key progress events, while EXCEPTION, ERROR, and
UNEXPECTED messages report failures.

For maintenance purposes, you should periodically rotate log files and purge old
messages from the database table.

Updating Conguration Properties
If you have configured logging using middle-tier properties, then you must restart the
affected processes for those processes to use any modified logging properties.

By default, the Oracle Applications Object Library (FND) log database profile values are
cached by each process for performance.

8-2 Oracle Applications Supportability Guide

In Release 11.5.9 and later, a cache invalidation mechanism is provided. Thus for all
user, responsibility, application, or site profiles, asking the user to log in again typically
forces the process to re-read the modified profile values.

Note that the Logging to Screen feature does not require JVMs to be restarted, as it does
not use any middle-tier or database profile values.

How to Completely Disable Logging
Use the following procedure to completely disable logging:

• If logging is configured using middle-tier properties, then set the AFLOG_ENABLED
middle-tier properties to FALSE in all appropriate middle-tier configuration files
(for example, jserv.properties) and/or startup scripts.

• If logging is configured using Oracle Application Object Library profiles in the
database, then use the logging setup screen in Oracle Applications Manager to turn
off logging for all applications, responsibilities, and users. For details, see the Oracle
Applications System Administrator’s Guide or the Oracle Applications Manager online
help.

See the "Updating Configuration Properties" section above for details on how and when
the modified values come into effect.

Purging Log Messages
You should periodically delete old log messages to account for the space limitations of
the database table. In addition, you should periodically rotate log files.

There are several ways to purge log messages. They are described below:

Using a Concurrent Program
The concurrent program "Purge Debug Log and System Alerts" (Short
name: FNDLGPRG) is the recommended way to purge messages. This program
purges all messages up to the specified date, except messages for active transactions
(new or open alerts, active ICX sessions, concurrent requests, and so on). In Release
11.5.10, this program is by default scheduled to run daily and purge messages older than
7 days. Internally this concurrent program invokes the FND_LOG_ADMIN APIs, which
are described later in this document.

Using Oracle Applications Manager
In Release 11.5.9 and later, go to System Alerts and Metrics from the Navigate to
drop-down list on the Applications Dashboard. Then click Logs. Refer to the Oracle
Applications Manager online help for instructions on how to use this screen.

Using the Oracle CRM System Administrator Console
In Release 11.5.8 and later, navigate to Settings > System > Debug Logging.

Using PL/SQL
You can use the FND_LOG_ADMIN PL/SQL package to delete log messages.

Logging Guidelines for System Administrators 8-3

For example:

SET SERVEROUTPUT ON
declare

del_rows NUMBER;
BEGIN
del_rows := fnd_log_admin.delete_all;
DBMS_OUTPUT.PUT_LINE(del_rows || ’ rows deleted’);
END;

Viewing Log Messages
This section summarizes the different user interfaces that can be used to view and work
with log messages, and how to access log messages from each UI.

CRM System Administrator Console
In Release 11.5.8 and later, navigate to Settings > System > Debug Logging.

Oracle Applications Framework Pages
In Release 11.5.10 and later, when working in Oracle Applications Framework pages, you
can use the following procedure to view log messages.

1. Pages based on the Oracle Applications Framework have a global button labeled
Diagnostics. Click this button to open a window where you can choose Show
Log. (Note that this "Diagnostics" global button does not refer to the Diagnostics
feature in Oracle Applications Manager that enables management and execution of
diagnostic tests.)

2. Select Show Log to open the Logs page within Oracle Applications Manager. The
Logs page is part of the System Alerts and Metrics feature.

Note: For the Diagnostics global button to be visible, the profile
option FND_DIAGNOSTICS must be set to YES.

Oracle Applications Manager
In Release 11.5.9 and later, go to System Alerts and Metrics from the Navigate to
drop-down list on the Applications Dashboard. Then click Logs.

Oracle Forms
Navigate to Help > Diagnostics > Logging.

8-4 Oracle Applications Supportability Guide

9
Logging Guidelines for Developers

Overview
You should utilize logging APIs frequently throughout your components. This will aid
in localizing problems if a bug is reported. We recommend that you carefully select
where you place logging calls, keep your code readable, and put only useful and
necessary information into log messages.

The log message text, module source, and severity come directly from you through the
coding of the APIs. These three fields cannot be changed or amended other than through
the code, so aim to make the information as informative and concise as possible.

As a developer, you only need familiarize yourself with a few APIs and the six
severities. Call the appropriate API and pass in the following three fields:

• Module Source

• Severity

• Message Text

All other fields are automatically populated by the APIs.

APIs
The following APIs are used to write log messages to the database:

• The FND_LOG PL/SQL package.

• The oracle.apps.fnd.common.AppsLog Java class.

• The aflog(*) C APIs.

When the APIs write to the database, they typically communicate with the package
FND_LOG_REPOSITORY. This package is what actually writes the messages. When
debugging middle-tier edge cases, log messages can be sent to a file.

Handling Errors
Use the following procedure to handle errors in your code:

Step 1: Log internal error details (for example: Exception Stack Trace, relevant
state information). These details will be used by system administrators, support
personnel, etcetera to diagnose the issue.

Step 2: If the error is severe, then raise a System Alert to notify the system administrator.

Logging Guidelines for Developers 9-1

Step 3: If the error affects the end user, report the error to the end user through the UI (or
through a Request Log in the case of a concurrent program). The message should be a
translatable user-friendly message, and should not contain any internal error details.

Performance Standards
For performance reasons, you are required to check if logging is enabled for the severity
of your message. This should happen before you create any objects or concatenate any
strings that form your log message. Checking the value of an integer is less costly than
allocating objects or concatenating strings. Remember that function arguments are
constructed before the function call. That is, a string concatenation would occur before
the Log write*(..) call is made! You should explicitly check if logging is enabled to
prevent string creation when logging is disabled.

Sample Java Code
if(AppsLog.isEnabled(Log.EVENT))
AppsLog.write("fnd.common.WebAppsContext", str1 + str2, Log.EVEN

T);

Sample PL/SQL Code
if(FND_LOG.LEVEL_PROCEDURE >= FND_LOG.G_CURRENT_RUNTIME_LEVEL)
then

FND_LOG.STRING(FND_LOG.LEVEL_PROCEDURE,
’fnd.plsql.MYSTUFF.FUNCTIONA.begin’, ’Hello, world!’);

end if;

Furthermore, you can use a local variable when inside a tight loop or branch of code that
is not sensitive to a context switch for the life of the branch. This avoids accessing a
package global variable, which is more expensive than a local variable. See the following
example:

procedure process_rows ()
l_debug_level number:=FND_LOG.G_CURRENT_RUNTIME_LEVEL;
l_proc_level number:=FND_LOG.LEVEL_PROCEDURE;
begin

for loop
validation...
other calls...
if (l_proc_level >= l_debug_level) then

fnd_log....
end if;

end loop;
end;

Use a similar optimization for Java and C code wherever possible.

Note: Changes in the Oracle Application Object Library Session (for
example, switching responsibilities) can cause the Log Profile values to
change. In such scenarios, the Oracle Application Object Library will
correctly update FND_LOG.G_CURRENT_RUNTIME_LEVEL, and
corresponding values in C and Java as well. However, if you have
cached the value in your code, you may not see this change.

9-2 Oracle Applications Supportability Guide

Module Source
The Module Source is a hierarchical identifier for a particular code block. The main
purpose of the Module Source is to:

• Uniquely identify the source of the message.

• Allow the system administrator to enable logging in particular areas, based on this
hierarchy.

For consistency, all module names must be constructed according to the following
rules. The module name identifier syntax is as follows:

<application short name>.<directory>.<file>.<routine>.<label>

Each syntax component is described in detail below.

<application short name>
Indicates the owner application of the code block, specified in lowercase. For
example: fnd, jtf, wf, sqlgl, inv.

<directory> | <package>
Indicates the directory or package where the file lives. In general, this is the actual file
system directory name. Usually the directory has just one component, but in some
cases, it may have two or more components. In Java, this is the full package name. See
the following table for examples with their languages and formats.

Examples of File Locations

Language Format Example

Java dir[.subdir] commonfunctionSecurity.client

C <src>.dir Src.flex

Library PL/SQL Resource Resource

Forms PL/SQL Forms Forms

Reports PL/SQL Reports Reports

Server PL/SQL Plsql Plsql

Loaders Loaders Loaders

<le> | <Class>
Indicates the patchable entity (file) that contains the code. In the case of server
PL/SQL, this is the package name rather than the file name. In Java, it is the class
name. See the following table for examples with their languages and formats.

Logging Guidelines for Developers 9-3

Code Entity Examples

Language Format Example

Java <ClassName> WebAppsContext

C <filename> Fndval

Library PL/SQL <library name> FNDSQF

Forms PL/SQL <form filename> FNDSCAPP

Reports PL/SQL <report filename> FNDMNMNU

Server PL/SQL <packagename> FND_GLOBAL

Loader <section> Afsload

<routine>
Indicates the code routine, procedure, method, or function. In the case of Oracle Forms
or Oracle Reports code where there is no routine name, this may be the trigger name. See
the following table for examples with their languages and formats..

Routine Examples

Language Format Example

Java <method> ValidateSession

C <function> Fdfgvd

Library PL/SQL <package.function> FND_UTILITIES.OPEN_URL

Forms PL/SQL <package.function> BLOCK_HANDLER.VAL
IDATE_NAME

Forms PL/SQL <function> DETERMINE_NEXT_BLOCK

Forms PL/SQL <trigger> PRE-FORM

Reports PL/SQL <function> LOOKUP_DISPLAY_VALUE

Reports PL/SQL <trigger> BEFORE_REPORT

Server PL/SQL <function> INITIALIZE

Loader <action>_<entity> UPLOAD_FUNCTION

<label>
Is a descriptive name for the part within the routine. The major reason for providing
the label is to make a module name uniquely identify exactly one log call. This
allows support analysts or programmers to know exactly which piece of code
produced your message, without needing to look at the message (which may be
translated). Therefore, you should make labels for each log statement unique within
a routine.

9-4 Oracle Applications Supportability Guide

For grouping a number of log calls from different routines and files that can be enabled
or disabled automatically, a two-part label can be used. The first part is the functional
group name, and the second part is the unique code location.

For example, Oracle Applications Object Library (FND) descriptive flexfield validation
code might have several log calls in different places with labels, such as:

• desc_flex_val.check_value

• desc_flex_val.display_window

• desc_flex_val.parse_code

These could all be enabled by setting the module as "fnd.%.desc_flex_val.%", even
though they may be in different locations in the code.

Messages logged at the PROCEDURE level should use the label "begin" for the message
logged upon entering and "end" or some variation thereof (like "end_exception") for the
message logged upon exiting. For example: begin, end, lookup_app_id, parse_sql_
failed, or myfeature.done_exec.

Module Name Standards
Use the guidelines below to ensure that your code meets the requirement for unique
module names across all applications.

• A dot (.) must be used as the separator in the module name hierarchy.

• At minimum, a module name must include the following required
components: <application short name>.<directory>.<file>.

• The module name cannot contain spaces or commas. Space and comma characters
are reserved for internal parsing. Specifically, nothing except mixed case
alphanumeric characters, underscores, dashes, and the dot separator are allowed.

• The module name is compared to without regard to case, so use the same
upper, lower, or mixed case format as the directories, files, and routines that the
module name is based on. For components that aren’t natively upper or lower case
(like the application short name and label), use lowercase.

Be aware that system administrators can turn on debugging at different levels
by using the above hierarchy schema. For example, the debug log calls for
fnd.plsql.FND_GLOBAL.APPS_INITIALIZE.init_profiles would be enabled if the
runtime user enabled logging at any of the following modules:

• fnd

• fnd.plsql

• fnd.plsql.FND

• fnd.plsql.FND_GLOBAL

• fnd.plsql.FND_GLOBAL.APPS_INITIALIZE

• fnd.plsql.FND_GLOBAL.APPS_INITIALIZE.init_profiles

Module Name Examples
• fnd.common.WebAppsContext.validateSession.begin

• fnd.common.WebAppsContext.validateSession.end

Logging Guidelines for Developers 9-5

• fnd.src.dict.afdict.afdget.lookup_shortname

• fnd.flex.FlexTextField.getSegmentField.lookup_value

• fnd.plsql.FND_GLOBAL.APPS_INITIALIZE.init_profiles

• fnd.resource.FNDSQF.FND_UTILITIES.OPEN_URL.find_browser

• fnd.loaders.afsload.DOWNLOAD_FORM.check_developer_k

• fnd.forms.FNDSCSGN.FND_DATA_TABLE.GET_DB_WINDOW_SIZE.geometry

Severities
For a table that summarizes the available log severities and their usage, refer to the
section AFLOG_LEVEL, page 6-5.

STATEMENT and PROCEDURE are intended for debugging by internal Oracle
development only. The higher severities, EVENT, EXCEPTION, ERROR and
UNEXPECTED, have a broader audience. We encourage you to monitor and attempt to
resolve ERROR and UNEXPECTED messages.

Log all internal and external failure messages at EXCEPTION, ERROR, or
UNEXPECTED. ERROR and UNEXPECTED messages should be translatable Message
Dictionary messages.

Determining where to insert log messages can be an iterative process. As you learn more
about your code usage, you gain a better understanding of where to insert log messages
that would quickly help isolate the root cause of the error. At a minimum, you should
log messages for scenarios described in the next sections.

UNEXPECTED
This severity indicates an unhandled internal software failure which typically requires a
code or environment fix.

Log any unrecoverable errors that could occur in as UNEXPECTED. Be very selective in
using the UNEXPECTED severity in Message Dictionary-based messages, as messages
logged with this severity can be automatically propagated to system administrators as
System Alerts. While all log messages should be concise and meaningful, UNEXPECTED
messages in particular should be thoughtfully created and reviewed so system
administrators can quickly understand the error.

ERROR
This severity indicates an external end user error which typically requires an end user fix.

Log all user error conditions as ERROR. System administrators may choose to enable
logging for ERROR messages to see the errors their users are encountering.

ERROR messages should use the Message Dictionary and be seeded in
FND_NEW_MESSAGES. If the corresponding error is encountered during runtime, the
message must be logged, and if applicable, displayed appropriately. For details, please
see the section Automatic Logging and Alerting for Seeded Message Dictionary
Messages, page 9-10.

Include the following in ERROR and UNEXPECTED messages:

9-6 Oracle Applications Supportability Guide

• Cause: A message describing the cause of the error, and any appropriate state
variable values. For example, "Invalid user=" + username;

• "Fix Information" or "Workaround", if known. For example, "Please check your
username and/or password."

EXCEPTION
This severity indicates a handled internal software failure which typically requires no fix.

Java exceptions should always be logged. Java exceptions are never part of the
normal code flow, and hence should never be ignored. Exceptions should be handled
appropriately in your code, and logged for debugging purposes. Whenever you raise
an exception, log the cause of the exception first. Convenience log APIs are provided
to allow you to pass an exception object in place of the message text. If no severity is
passed, then Java exceptions are by default logged at severity EXCEPTION.

Severe exceptions that prevent your product from functioning should be logged at
severity UNEXPECTED. For example, log a SQLException when a user places a new
order as UNEXPECTED.

EVENT
This severity is used for high-level progress reporting. These apply to application
milestones, such as completing a step in a flow, or starting a business transaction.

Whenever your application code reads configurable values, the configured values
must be logged. The value may be obtained from profiles, already known
attributes of an object (for example, the customer’s primary address), defaulting
rules, and so on. Log the source, name, and value. For consistency, the label
within the module field of such messages should be appended with ".config". For
example, "fnd.common.MyClass.MyAPI.config"

PROCEDURE
This severity is used for API-level progress reporting.

Log key functions and APIs as PROCEDURE. The module name for such
messages should contain the function or API name, "begin" at the beginning
of the procedure, and "end" at the end. For example, the validateSession(..)
API is a key API that logs a message at the beginning of the API with
module name, "fnd.common.WebAppsContext.validateSession.begin", and the
end, "fnd.common.WebAppsContext.validateSession.end".

Whenever you override any base class methods, you must log a message in your derived
class’s implementation.

The message body should contain the key input values, state values, and return values.
For example, log input and output for all controllers, Request, FormRequest, FormData
methods.

Log messages at integration points, especially when calling another application’s
API. Also, use logging when calling procedures across application layers. For
example, when calling a PL/SQL API from the Java layer.

Logging Guidelines for Developers 9-7

STATEMENT
This severity is used for low-level progress reporting.

If you generate SQL (dynamic SQL), it must be logged.

Log all bind variables.

Any user interface choice or dynamic modification of the user interface must be
logged. For example, use of "switcher" beans, or page forwards.

Where appropriate, include relevant state variables.

Large Text and Binary Message Attachments
In Release 11.5.9 and later, you can use Message Attachment APIs to add additional
context information to log messages and/or System Alerts. This feature provides efficient
buffered writing APIs for logging large attachments. The seeded message text for such
attachments should contain a brief description of the error, and the attachment should
contain all relevant context details.

Currently attachments are stored in a database LOB. As of Release 11.5.10
(specifically, with minipack OAM.H), you can view attachments through Oracle
Applications Manager.

Java Code
oracle.apps.fnd.common.AppsLog:

getAttachmentWriter(String, Message, int); // For text data
getBinaryAttachmentWriter)String, Message, int, ...); // For b

inary data

For example:

9-8 Oracle Applications Supportability Guide

if(alog.isEnabled(Log.UNEXPECTED))
{
AttachmentWriter attachment = null;
Message Msg = new Message("FND", "LOGIN_ERROR");
Msg.setToken("ERRNO", sqle.getErrorCode(), false);
Msg.setToken("REASON", sqle.getMessage(), false);
try
{
// ’alog’ is instance of AppsLog (not anonymous)
attachment = alog.getAttachmentWriter(

"fnd.security.LoginManager.authenticate", Msg, Log.UNEXPECTED);
if (attachment != null)
{
// Write out your attachment
attachment.println("line1");
attachment.println("line2");
attachment.println("line3");

}
} catch (Exception e)
{
// Handle the error

} finally
{
// You must close the attachment!
if (attachment != null)
try { attachment.close(); } catch (Exception e) { }

}
}

PL/SQL Code
FND_LOG.MESSAGE_WITH_ATTACHMENT(..);
FND_LOG_ATTACHMENT.WRITE(..); // For text data
FND_LOG_ATTACHMENT.WRITE_RAW(..); // For binary data

For example:

if(FND_LOG.LEVEL_UNEXPECTED >=
FND_LOG.G_CURRENT_RUNTIME_LEVEL) then

FND_MESSAGE.SET_NAME(’FND’, ’LOGIN_ERROR’); -- Seeded Message
-- Runtime Information
FND_MESSAGE.SET_TOKEN(’ERRNO’, sqlcode);
FND_MESSAGE.SET_TOKEN(’REASON’, sqlerrm);
ATTACHMENT_ID := ND_LOG.MESSAGE_WITH_ATTACHMENT(FND_LOG.LEVEL_UN

EXPECTED, ’fnd.plsql.Login.validate’, TRUE);
if (ATTACHMENT_ID <> -1) then
FND_LOG_ATTACHMENT.WRITELN(ATTACHMENT_ID, "line1");
FND_LOG_ATTACHMENT.WRITELN(ATTACHMENT_ID, "line2");
FND_LOG_ATTACHMENT.WRITELN(ATTACHMENT_ID, "line3");
-- You must call CLOSE
FND_LOG_ATTACHMENT.CLOSE(ATTACHMENT_ID);

end if;
end if;

Logging Guidelines for Developers 9-9

Automatic Logging and Alerting for Seeded Message Dictionary Messages
Seeded Oracle Applications Object Library Message Dictionary messages can be made
automatically loggable and automatically alertable by setting the corresponding message
metadata attributes.

At runtime, when the Oracle Applications Object Library Message Dictionary APIs are
invoked to retrieve these messages in translated format, they will also be internally
logged or alerted if the current log configuration permits it.

To be automatically logged, the seeded message’s "Log Severity" attribute must be
greater than or equal to the configured log level.

To be automatically alerted, the seeded message’s "Alert Category" and "Alert Severity"
attributes must be defined, and the log configuration should be enabled at least at the
6-UNEXPECTED level.

General Logging Tips
• Do not log sensitive information such as passwords or credit card numbers in

unencrypted plain text.

• For readability, do not code the integer values (1, 2, 3, etc.) in your calls to designate
severity. Always use the appropriate descriptive name listed above.

How to Log from Java
AppsLog is the class that provides core logging functionality. The Oracle CRM
Technology Foundation provides convenient wrapper APIs around AppsLog. This
section describes how to use AppsLog and the wrapper APIs.

Core AppsLog
In Java, the core Oracle Applications Object Library (FND) logging functionality is
provided by the oracle.apps.fnd.common.AppsLog class. A number of convenience
wrappers are available.

AppsLog is a thread-safe class that allows multiple users and threads to log messages
concurrently. AppsLog objects are typically created and configured based on a user’s log
profile settings during the initialization of a user’s Oracle Applications Object Library
session. Note that AppsLog is not a static singleton class. As different users can have
different log profile settings, multiple AppsLog objects will exist within a JVM.

Take care to use the correct AppsLog instance, as there can be multiple concurrent
threads and users. Try first to use the current user’s AppsContext, and call getLog() on
it to get the AppsLog instance. AppsContext’s AppsLog is fully initialized based on
the current user’s log profile settings and Java system properties. Depending on its
configuration, it can log to either the database or a file. Do not create static references to
this fully initialized AppsLog. Use APIs to get the appropriate AppsContext’s AppsLog
instance every time.

In edge-case scenarios (for example, before an Oracle Applications Object Library
Session is fully initialized and there is no AppsContext available), you can
call static AppsLog.getAnonymousLog() to get a standalone AppsLog that is
anonymous, initialized only based on Java system properties, and can log only to a file.

9-10 Oracle Applications Supportability Guide

Code Sample
public boolean authenticate(AppsContext ctx, String user, String
passwd)

throws SQLException, NoSuchUserException {
AppsLog alog = (AppsLog) ctx.getLog();
if(alog.isEnabled(Log.PROCEDURE)) /*To avoid String Concat if

not enabled */
alog.write("fnd.security.LoginManager.authenticate.begin",

"User=" + user, Log.PROCEDURE);
/* Never log plain-text security sensitive parameters like pas

swd! */
try {

validUser = checkinDB(user, passwd);
} catch(NoSuchUserException nsue) {

if(alog.isEnabled(Log.EXCEPTION))
alog.write("fnd.security.LoginManager.authenticate",nsue,

Log.EXCEPTION);
throw nsue; // Allow the caller Handle it appropriately
} catch(SQLException sqle) {
if(alog.isEnabled(Log.UNEXPECTED)) {
alog.write("fnd.security.LoginManager.authenticate", sqle,

Log.UNEXPECTED);
Message Msg = new Message("FND", "LOGIN_ERROR"); /* System

Alert */
Msg.setToken("ERRNO", sqle.getErrorCode(), false);
Msg.setToken("REASON", sqle.getMessage(), false);
/* Message Dictionary messages should be logged using wr

iteEncoded(..)
* or write(..Message..), and never using write(..Strin

g..) */
alog.write("fnd.security.LoginManager.authenticate", Msg,

Log.UNEXPECTED);
}
throw sqle; // Allow the UI caller to handle it appropriately
} // End of catch(SQLException sqle)
if(alog.isEnabled(Log.PROCEDURE)) /* To avoid String Concat if

not enabled */
alog.write("fnd.security.LoginManager.authenticate.end", "

validUser=" + validUser, Log.PROCEDURE);
return success;
}

OAPageContext and OADBTransaction APIs
The classes oracle.apps.fwk.util.OAPageContext and oracle.apps.fwk.util.
OADBTransaction delegate log calls to the AppsLog class. To make logging calls in a UI
controller, use OAPageContext. To make logging calls from an application module, use
OADBTransaction.

The following are the main logging APIs provided:

isLoggingEnabled(int logLevel)
This returns true if logging is enabled for the given log level. In all cases, test that logging
is enabled before creating a message and calling the writeDiagnostics method.

Logging Guidelines for Developers 9-11

writeDiagnostics(Object module, String messageText, int logLevel)
This writes log messages to the database. Remember that each log message includes a
log sequence, user ID, session ID, module identifier, level, and message.

CRM Technology Foundation APIs
The class oracle.apps.jtf.base.Logger delegates log calls to the AppsLog class. The
following are the main logging APIs provided:

Logger.out(String message, int severity, Class module);
Use this API to log your message. The message length can be up to 4000 characters. For
example:

public class MyClass {
…
public boolean myAPI() {
…
if(Logger.isEnabled(Logger.STATEMENT)) // Important check for Pe

rformance!
Logger.out("My message", Logger.STATEMENT, MyClass.class);

}
}

Logger.out(String message, int severity, Object module);
In situations where the "Class" is not available (such as when writing a JSP), you can use
this API and pass in a String. The message length can be up to 4,000 characters. For
example:

<% if(Logger.isEnabled(Logger.ERROR)) // Important check for Pe
rformance!

Logger.out("In JSP land use the JSP Name", Logger.ERROR,
"jtf.html.jtftest.jsp"); %>

Logger.out(Exception e, Class module);
Use this API to log an exception. If the "Class" is not available, you can pass in the
String object. If the exception length is greater than 4,000 characters, then the exception
is split and logged in multiple rows. By default, all exceptions are logged at severity
EXCEPTION. If you would like to log an exception at a different severity, you can use the
corresponding APIs that take the severity as one of the arguments.

For example:
Logger.out(Exception e, int severity, Class module);

Note: Do not specify integer values (1, 2, 3, etc.) in your calls to Logger
APIs. Instead, refer to the severity level by the appropriate name:

Logger.STATEMENT

Logger.PROCEDURE

Logger.EVENT

Logger.EXCEPTION

Logger.ERROR

9-12 Oracle Applications Supportability Guide

Logger.UNEXPECTED

How to Log from PL/SQL
PL/SQL APIs are a part of the FND_LOG Package. These APIs assume that appropriate
application user session initialization APIs (for example, FND_GLOBAL.INITIALIZE(..))
have already been invoked for setting up the user session properties on the database
session. These application user session properties (UserId, RespId, AppId, SessionId)
are internally needed for the Log APIs. In general, all Oracle Application frameworks
invoke these session initialization APIs for you.

To log plain text messages, use FND_LOG.STRING(..),.

Logging Guidelines for Developers 9-13

API Description
PACKAGE FND_LOG IS

LEVEL_UNEXPECTED CONSTANT NUMBER := 6;
LEVEL_ERROR CONSTANT NUMBER := 5;
LEVEL_EXCEPTION CONSTANT NUMBER := 4;
LEVEL_EVENT CONSTANT NUMBER := 3;
LEVEL_PROCEDURE CONSTANT NUMBER := 2;
LEVEL_STATEMENT CONSTANT NUMBER := 1;

/*
** Writes the message to the log file for the specified
** level and module
** if logging is enabled for this level and module
*/
PROCEDURE STRING(LOG_LEVEL IN NUMBER,

MODULE IN VARCHAR2,
MESSAGE IN VARCHAR2);

/*
** Writes a message to the log file if this level and module
** are enabled.
** The message gets set previously with FND_MESSAGE.SET_NAME,
** SET_TOKEN, etc.
** The message is popped off the message dictionary stack,
** if POP_MESSAGE is TRUE.
** Pass FALSE for POP_MESSAGE if the message will also be
** displayed to the user later.
** Example usage:
** FND_MESSAGE.SET_NAME(...); -- Set message
** FND_MESSAGE.SET_TOKEN(...); -- Set token in message
** FND_LOG.MESSAGE(..., FALSE); -- Log message
** FND_MESSAGE.RAISE_ERROR; -- Display message
*/
PROCEDURE MESSAGE(LOG_LEVEL IN NUMBER,

MODULE IN VARCHAR2,
POP_MESSAGE IN BOOLEAN DEFAULT NULL);

/*
** Tests whether logging is enabled for this level and module,
** to avoid the performance penalty of building long debug
** message strings unnecessarily.
*/
FUNCTION TEST(LOG_LEVEL IN NUMBER, MODULE IN VARCHAR2)

RETURN BOOLEAN;

Example
Assuming Oracle Applications Object Library session initialization has occurred and
logging is enabled, the following calls would log a message:

9-14 Oracle Applications Supportability Guide

begin

/* Here is where you would call a routine that logs messages */
/* Important performance check, see if logging is enabled */
if(FND_LOG.LEVEL_PROCEDURE >= FND_LOG.G_CURRENT_RUNTIME_LEVEL)
then

FND_LOG.STRING(FND_LOG.LEVEL_PROCEDURE,
’fnd.plsql.MYSTUFF.FUNCTIONA.begin’, ’Hello, world!’);

end if;
/

The FND_LOG.G_CURRENT_RUNTIME_LEVEL global variable allows callers to avoid
a function call if a log message is not for the current level. It is automatically populated
by the FND_LOG_REPOSITORY package.

if(FND_LOG.LEVEL_EXCEPTION >= FND_LOG.G_CURRENT_RUNTIME_LEVEL)
then

dbg_msg := create_lengthy_debug_message(...);
FND_LOG.STRING(FND_LOG.LEVEL_EXCEPTION,

’fnd.form.ABCDEFGH.PACKAGEA.FUNCTIONB.firstlabel’, dbg_
msg);
end if;

For Forms Client PL/SQL, the APIs are the same. However to check if logging is
enabled, you should call FND_LOG.TEST(..).

For example, when logging Message Dictionary Messages:

if(FND_LOG.LEVEL_UNEXPECTED >=
FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
FND_MESSAGE.SET_NAME(’FND’, ’LOGIN_ERROR’); -- Seeded Message
-- Runtime Information
FND_MESSAGE.SET_TOKEN(’ERRNO’, sqlcode);
FND_MESSAGE.SET_TOKEN(’REASON’, sqlerrm);
FND_LOG.MESSAGE(FND_LOG.LEVEL_UNEXPECTED, ’fnd.plsql.Login.val

idate’, TRUE);
end if;

How to Log from C
Use the following APIs to log from C:

Logging Guidelines for Developers 9-15

#define AFLOG_UNEXPECTED 6
#define AFLOG_ERROR 5
#define AFLOG_EXCEPTION 4
#define AFLOG_EVENT 3
#define AFLOG_PROCEDURE 2
#define AFLOG_STATEMENT 1

/*
** Writes a message to the log file if this level and module is
** enabled
*/
void aflogstr(/*_ sb4 level, text *module, text* message _*/);

/*
** Writes a message to the log file if this level and module is
** enabled.
** If pop_message=TRUE, the message is popped off the message
** Dictionary stack where it was set with afdstring() afdtoken(),
** etc. The stack is not cleared (so messages below will still be
** there in any case).
*/
void aflogmsg(/*_ sb4 level, text *module, boolean pop_message _*/
);

/*
** Tests whether logging is enabled for this level and module, to
** avoid the performance penalty of building long debug message
** strings
*/
boolean aflogtest(/*_ sb4 level, text *module _*/);

/*
** Internal
** This routine initializes the logging system from the profiles.
** It will also set up the current session and username in its sta
te */
void afloginit();

How to Log in Concurrent Programs

Debug and Error Logging
Use a CP Request Log only for messages intended for end users. Log debug information
and error details (intended for system administrators and support personnel) to
FND_LOG.

PL/SQL, Java, or C code that could be invoked by both CPs and application code should
only use Oracle Applications Object Library (FND) Log APIs. If needed, the wrapper
CP should perform appropriate batching and logging to the Request Log for progress
reporting purposes.

For message correlation, in Release 11.5.10 and later, CP Request Log APIs log messages
to both the Request Log and FND Log at severity EVENT (only if logging is enabled at
EVENT or a lower level).

9-16 Oracle Applications Supportability Guide

In Java CPs, use AppsLog for debug and error logging. The AppsLog instance can be
obtained from the CpContext Object by calling getLog().

Request Log
Caution: Do not use the Request Log for debug messages or internal
error messages that are oriented to system administrators and/or Oracle
Support. Such messages should only be logged to FND_LOG.

The Request Log is the end user UI for concurrent programs (CPs). When writing CP
code, only translatable, end user-oriented messages should be logged to the Request Log.

For example, if an end user inputs a bad parameter to the CP, then log an error message
to the Request Log so the end user can take corrective action. A code sample follows:

-- Seeded Message for End-User
FND_MESSAGE.SET_NAME(’FND’, ’INVALID_PARAMETER’);
-- Runtime Parameter Information
FND_MESSAGE.SET_TOKEN(’PARAM_NAME’, pName);
FND_MESSAGE.SET_TOKEN(’PARAM_VALUE’, pValue);
-- Useful for Auto-Logging Errors
FND_MESSAGE.SET_MODULE(’fnd.plsql.mypackage.myfuntionA’);
fnd_file.put_line(FND_FILE.LOG, FND_MESSAGE.GET);

However, if the CP fails due to an internal software error, then the detailed failure
message should be logged to FND_LOG. Additionally, a high-level generic message such
as "Your request could not be completed due to an internal error"should also be logged
to the Request Log to inform the end user of the error.

Output File
Caution: Do not use the Output File for debug messages or internal
error messages that are oriented to system administrators and/or Oracle
Support. Such messages should only be logged to FND_LOG.

An output file is a formatted file generated by a CP that could be sent to a printer or
viewed in a UI window. An invoice is an example of an output file, for example:

fnd_file.put_line(FND_FILE.OUTPUT, ******** XYZ Invoice *******
*’);

How to Raise System Alerts
Raise System Alerts to notify system administrators of serious problems or
potentially serious problems. System Alerts are posted to the Oracle Applications
Manager console, and are also sent to subscribed administrators through Workflow
notifications. These messages should be used in cases where one of the following applies:

• The person who needs to take action is not the end user who encountered the
problem.

• The problem is encountered by system processes, where there is no end user.

Logging Guidelines for Developers 9-17

When a System Alert is posted, a variety of context information is automatically
collected. This may include information about the end user, responsibility, product,
component, OS process, database session, and so on. Oracle Applications Manager
allows users to drill down from a System Alert message to view any collected context
information, associated debug log messages, and other potentially relevant information.

Additionally, Oracle Applications Manager tracks multiple occurrences of the same alert
message to prevent duplicate notifications from being sent.

All system alert messages must be defined in the Message Dictionary using the messages
form under the system administration responsibility.

Raising a System Alert
• The message must be logged at the UNEXPECTED severity.

• The message must be an encoded Message Dictionary message.

• The message must have two attributes set in the Message Dictionary to facilitate
notification routing:

• Category: System, Product, Security, or User.

• Severity: Critical, Error, or Warning.

PL/SQL Code Sample
...
Exception
when others then
if(FND_LOG.LEVEL_UNEXPECTED >=

FND_LOG.G_CURRENT_RUNTIME_LEVEL) then
-- To be alertable, seeded message must have
-- Alert Category & Serverity defined
FND_MESSAGE.SET_NAME(’FND’, ’LOGIN_ERROR’); -- Seeded Message
-- Runtime Information
FND_MESSAGE.SET_TOKEN(’ERRNO’, sqlcode);
FND_MESSAGE.SET_TOKEN(’REASON’, sqlerrm);
FND_LOG.MESSAGE(FND_LOG.LEVEL_UNEXPECTED, ’fnd.plsql.Login.val

idate’, TRUE);
end if;

...

Java Code Sample
if(alog.isEnabled(Log.UNEXPECTED)) {

// To be alertable, seeded Message MUST have Alert
// Category & Severity defined.

Message Msg = new Message("FND", "LOGIN_ERROR");
Msg.setToken("ERRNO", sqle.getErrorCode(), false);
Msg.setToken("REASON", sqle.getMessage(), false);
alog.write("fnd.security.LoginManager.authenticate", Msg, Log

.UNEXPECTED);
}

9-18 Oracle Applications Supportability Guide

Guidelines for Dening System Alerts
• Make System Alert messages short and concise. System Alerts summarize problems

and are used in reports and notifications, which in turn provide links to the related
details.

• Do not include context information tokens in System Alert messages. For
example, do not include the concurrent program name, Form name, time, routine,
user, responsibility, etcetera in System Alert messages. Such context information
is collected automatically by the logging APIs, and would be redundant in the
System Alert message. Also, the alert message is used for filtering duplicate
notifications. Including context information in the system alert message would
defeat this filtering mechanism.

• You must set a value for the "Category" attribute. This attribute is used to categorize
alerts and route notifications to the appropriate subscription. The valid values are as
follows:

• System

Alert messages with the category "System" are typically routed to technical users
such as the system administrators or DBAs who maintain the technology stack.

• Product

Alert messages with the category "Product" are typically routed to functional
administrators or product super users who take care of product setup and
maintenance.

• Security

Alert messages with the category "Security" are to alert administrators about
E-Business Suite security issues.

• User

Alert messages with the category "User" are to alert administrators about issues
reported by end users of the E-Business Suite.

• You must set a value for the "Severity" attribute. This attribute is used for sorting and
filtering in Oracle Applications Manager. Also, users may subscribe to notifications
for alert messages based on this attribute. The valid values are "Critical," "Error," and
"Warning." Use "Critical" when a serious error completely impedes the progress of
an important business process or affects a large user community. Use "Error" for less
serious, more isolated errors. Use "Warning" when it is unclear whether the error
has a negative impact on users or business processes.

• Refer to the online help provided in Oracle Applications Manager for more
information about System Alerts.

Logging Guidelines for Developers 9-19

A
PL/SQL Helper Packages

Overview
This section describes PL/SQL helper packages:

• JTF_DIAGNOSTIC_ADAPTUTIL - This package provides helper APIs to initialize
and manipulate data structures used by PL/SQL diagnostic tests.

• JTF_DIAGNOSTIC_COREAPI - This package provides methods that can be used
in formatting test reports (both HTML and plain text).

Related Topics
Package JTF_DIAGNOSTIC_ADAPTUTIL, page A-1

Package JTF_DIAGNOSTIC_COREAPI, page A-5

Package JTF_DIAGNOSTIC_ADAPTUTIL
This package provides helper APIs to initialize and manipulate data structures used by
PL/SQL diagnostic tests.

Function initInputTable

Usage
initInputTable RETURN JTF_DIAG_INPUTTBL

Returns
Returns an initialized JTF_DIAG_INPUTTBL object.

Function initReportClob

Usage
initReportClob RETURN CLOB

Returns
Returns an initialized CLOB object.

PL/SQL Helper Packages A-1

Function compareResults

Usage
compareResults(oper IN VARCHAR2, arg1 IN VARCHAR2, arg2 IN VARCHAR2)
RETURN BOOLEAN

Arguments
This procedure takes a three arguments:

• oper - The operand of the operation that is to be performed, i.e., ">", "<", or "=".

• arg1 - The expected String value .

• arg2 – The string value that is to be tested.

For example, passing in ’=’ ’string1’ ’StRiNg’ would evaluate to true, as the two strings
match. Comparison is not case-sensitive.

Note: These functions are included in the utility package to help you implement your
test case. They are by no means the only way to compare results within the PL/SQL
diagnostic test template. For example:

IF compareResults(‘=’,’STR1’,’STR2’) THEN

is logically the same as:

IF (‘STR1’ = ‘STR2’) THEN

Either can be used while writing test cases.

Function compareResults

Usage
compareResults(oper IN VARCHAR2, arg1 IN INTEGER, arg2 IN INTEGER) RETURN
BOOLEAN

Arguments
This procedure takes three arguments:

• oper - The operator of the operation that is to be performed , i.e., ">", "<", or "=".

• arg1 - The expected value.

• arg2 - The value that is to be tested.

That is, passing in > 50 1 would evaluate to true, as 50 is greater than 1, and so on.

compareResults(‘>’,1,50) would evaluate to false, as 1 is less than 50.

Note: These functions are included in the utility package to help you implement your
test case. They are by no means the only way to compare results within the adapter. For
example:

IF compareResults(‘>’,5000,10) THEN

is logically the same as:

A-2 Oracle Applications Supportability Guide

IF (5000 > 10) THEN

and both return BOOLEAN values.

Procedure constructReport

Usage
constructReport(status IN VARCHAR2, errStr IN VARCHAR2, fixInfo IN
VARCHAR2, isFatal IN VARCHAR2) RETURN JTF_DIAG_REPORT

Parameters
• status – The result of the test: "SUCCESS", "WARNING", or "FAILURE".

• errStr - The error that has been populated by the user. It could be SQLERRM or a
user-defined error message, but must be under 4000 characters in length.

• fixInfo – A string to help the user to fix the associated problem. It must be under
4000 characters in length.

• isFatal - Either TRUE or FALSE (string representations are not Boolean values).

Procedure getInputValue
getInputValue(argName IN VARCHAR2, inputs IN JTF_DIAG_INPUTTBL) RETURN
VARCHAR2

Parameters
• argname - The name of the variable you want retrieved.

• inputs – A JTF_DIAG_INPUTTBL object which is where the associated value is to
be extracted from.

Procedure addInput

Usage
addInput(inputs IN JTF_DIAG_INPUTTBL, var IN VARCHAR2, val IN VARCHAR2)
RETURN JTF_DIAG_INPUTTBL

Parameters
• inputs - A JTF_DIAG_INPUTTBL object which is a table of JTF_DIAG_INPUTS This

object breaks down into two varchar2 objects representing the variable name and a
second varchar2 representing the value. The inputs parameter must be initialized
and passed into each additional addInput call to accumulate the variables as the
inputs variable gets appended to with the name,value and is then returned.

• var – The name of the variable to add (VARCHAR2).

• val – The associated value of the variable name passed in (VARCHAR2).

Returns
This function creates a new JTF_DIAG_INPUTS object from the variable and value
passed in and returns this added pairing into the caller function as part of the
JTF_DIAG_INPUTTBL object. As this method is overloaded and no "showValue" is

PL/SQL Helper Packages A-3

passed in this instance, this field is set as TRUE by default for this call. That is, the
value field will be visible on the UI layer.

Function addInput

Usage
addInput (inputs IN JTF_DIAG_INPUTTBL, var IN VARCHAR2, val IN
VARCHAR2, showValue IN BOOLEAN) RETURN JTF_DIAG_INPUTTBL

Parameters
• inputs - A JTF_DIAG_INPUTTBL object which is a table of JTF_DIAG_INPUTS. This

object breaks down into two varchar2 objects representing the variable name and a
second varchar2 representing the value. The inputs parameter must be initialized
and passed into each additional addInput call to accumulate the variables as the
inputs variable gets appended to with the name,value and is then returned.

• var – The name of the variable to add (VARCHAR2).

• val – The associated value of the variable name passed in (VARCHAR2).

• showValue – A Boolean value to indicate if field is confidential on the UI.

Returns
This function creates a new JTF_DIAG_INPUTS object from the variable and value
passed in and returns this added pairing into the caller function as part of the
JTF_DIAG_INPUTTBL object. The showValue parameter can either be set to TRUE or
FALSE. If value is true then the value field is visible on the UI. If the value is false, then
the value field is confidential on the UI and will be displayed as a hidden field by a series
of asterisks in the value’s place.

Procedure setUp Vars

Usage
setUpVars(reportClob OUT CLOB)

This procedure is deprecated. See setUpVars below.

Procedure setUp Vars

Usage
setUpVars

Replaces setUpVars(CLOB).

This takes no arguments. This procedure initializes global variables for the current
session. For example:

• The report CLOB is initialized for the session.

• The global flag (b_html_on) indicating that the report is to be written in HTML is
reset to false (b_html_on)

• The global flag is set to true when ‘@html’ is the first word written to the CLOB.

A-4 Oracle Applications Supportability Guide

Procedure addStringToReport

Usage
addStringToReport (reportClob IN OUT CLOB, reportStr IN LONG)

This procedure is deprecated. See addStringToReport (..) below.

Procedure addStringToReport

Usage
addStringToReport (reportStr IN LONG)

Replaces addStringToReport (CLOB,LONG). It takes a LONG representation of the
report string and appends the string onto the end of the current report CLOB. You are
responsible for adding any string formatting, such as new lines.

Function addOutput

Usage
FUNCTION addOutput(outputs IN JTF_DIAG_OUTPUTTBL,var IN VARCHAR2,val IN
VARCHAR2) RETURN JTF_DIAG_OUTPUTTBL;

Function initOutputTable

Usage
FUNCTION initOutputTable RETURN JTF_DIAG_OUTPUTTBL;

Function addDependency

Usage
FUNCTION addDependency(dependencies IN JTF_DIAG_DEPENDTBL, val IN
VARCHAR2) RETURN JTF_DIAG_DEPENDTBL;

Function initDependencyTable

Usage
FUNCTION initDependencyTable RETURN JTF_DIAG_DEPENDTBL;

Package JTF_DIAGNOSTIC_COREAPI
This package provides methods that can be used in formatting test reports (both HTML
and plain text).

Procedure Line_Out

Usage
Line_Out (’String’)

PL/SQL Helper Packages A-5

Parameters
Any text string.

Output
Writes the text to the report CLOB. This procedure is similar to the addStringToReport
procedure in the JTF_DIAGNOSTIC_ADAPTUTIL package.

Example
begin

JTF_DIAGNOSTIC_COREAPI.Line_Out(’Run Gather Schema Statistics’
);
end;

Procedure Insert_Style_Sheet

Usage
Insert_Style_Sheet

Output
Inserts a style sheet into the output. This API is not normally needed, as the style sheet is
automatically inserted with the header.

Procedure ActionErrorPrint

Usage
ActionErrorPrint (’String’);

Parameters
Any text string.

Output
Displays the text string with the word ACTION prior to the string.

Example
begin

ActionErrorPrint(’Run Gather Schema Statistics’);
end;

Procedure ActionPrint

Usage
ActionPrint (’String’);

Parameters
Any text string.

Output
Displays the text string.

A-6 Oracle Applications Supportability Guide

Example
begin

ActionPrint(’Run Gather Schema Statistics’);
end;

Procedure ActionWarningPrint

Usage
ActionWarningPrint (’String’);

Parameters
Any text string.

Output
Displays the text string in a warning format.

Example
begin

ActionWarningPrint(’Run Gather Schema Statistics’);
end;

Procedure WarningPrint

Usage
WarningPrint (’String’);

Parameters
Any text string.

Output
Displays the text string in warning format.

Example
begin
WarningPrint(’Statistics are not up to date’);
end;

Procedure ActionErrorLink

Usage
ActionErrorLink (’Pre_String’,’Note_Number’,’Post_String’);

ActionErrorLink (’Pre_String’,’URL’,’Link_Text’, ’Post_String’)

Parameters
• Pre_String - The text to appear prior to the link

• Note_Number - The number of the OracleMetaLink note being linked to.

• URL - Any valid URL.

PL/SQL Helper Packages A-7

• Link_Text - Text for the link to the URL.

• Post_String - Text to appear after the link.

Output
This API displays the pre-link string, the link (as specified either by the note number or
by the URL and link text), and the post-link string all in the format of an Error Action. It
outputs HTML only.

Example
begin
ActionErrorLink(’For clarification see note’, 112233.1, ’which pro
vides more information on the subject’);
ActionErrorLink(’For clarification see the’, ’http://someurl.us.co
m/somepage.html’,’Development Homepage’, ’which provides more info
rmation on the subject’);
end;

Procedure ActionWarningLink

Usage
ActionWarningLink (’Pre_String’,’Note_Number’,’Post_String’);

ActionWarningLink (’Pre_String’,’URL’,’Link_Text’, ’Post_String’);

Parameters
• Pre_String - The text to appear prior to the link.

• Note_Number - The number of the OracleMetaLink note being linked to.

• URL - Any valid URL.

• Link_Text - The text for the link to the URL.

• Post_String - The text to appear after the link.

Output
This API displays the pre-link string, the link (as specified either by the note number
or by the URL and link text), and the post-link string all in the format of an Warning
Action. It outputs HTML only.

Example
begin
ActionWarningLink(’For clarification see note’, 112233.1, ’which p
rovides more information on the subject’);
ActionWarningLink(’For clarification see the’, ’http://someurl.us.
com/somepage.html’,’Development Homepage’, ’which provides more in
formation on the subject’);
end;

A-8 Oracle Applications Supportability Guide

Procedure ErrorPrint

Usage
ErrorPrint (’String’);

Parameters
Any text string.

Output
Displays the text string.

Example
begin

ErrorPrint(’Statistics have not been run’);
end;

Procedure Show_Table_Header
This is a private text-only procedure used by Display_SQL to display the headers.

Procedure SectionPrint

Usage
SectionPrint (’String’);

Parameters
Any text string.

Example
begin
SectionPrint(’Checking OE Parameters’);
end;

Procedure Tab0Print

Usage
Tab0Print (’String’);

Parameters
Any text string.

Output
Displays the text string without any indentation.

Example
begin

Tab0Print(’Layer 0’);
end;

PL/SQL Helper Packages A-9

Procedure Tab1Print

Usage
Tab1Print (’String’);

Parameters
Any text string.

Output
Displays the text string with a 0.25 inch indentation.

Example
begin

Tab1Print(’Layer 1’);
end;

Procedure Tab2Print

Usage
Tab2Print (’String’);

Parameters
Any text string.

Output
Displays the text string with a 0.5 inch indentation.

Example
begin

Tab2Print(’Layer 2’);
end;

Procedure Tab3Print

Usage
Tab3Print (’String’);

Parameters
Any text string.

Output
Displays the text string with a 0.75 inch indentation.

Example
begin

Tab3Print(’Layer 3’);
end;

A-10 Oracle Applications Supportability Guide

Procedure BRPrint

Usage
BRPrint;

Output
Displays a blank line.

Example
begin

Tab3Print(’Layer 3’);
BRPrint;
Tab3Print(’Layer 4’);

end;

Procedure CheckFinPeriod

Usage
CheckFinPeriod (’Set of Books ID’,’Application ID’);

Parameters
• Set of Books ID - The ID for the set of books.

• Application ID - The ID of the application whose periods are being checked.

Output
This API lists the number of defined and open periods and indicates the latest period. It
produces warnings if no periods are open or if the current date is not in an open period.

Example
CheckFinPeriod(62, 222); -- Check open periods for AR SOB 62
CheckFinPeriod(202, 201); -- Check open periods for PO SOB 202

Procedure CheckKeyFlexeld

Usage
CheckKeyFlexfield (’Key Flexfield Code’,’Flexfield Structure ID’,’Print Header’);

Parameters
• Key Flexfield Code - The code of the Key Flexfield to be displayed. For example, use

GL# for the Accounting Flexfield.

• Flexfield Structure ID - The id_flex_num of the specific structure of the Key Flexfield
whose details are to be displayed. If null (the default), the API prints the details of
all structures.

• Print Header - A Booleanoperator (true or false) that indicates whether the output
should print a heading before outputting the details of the Key Flexfield. The default
is "true".

PL/SQL Helper Packages A-11

Returns
If a value is provided for the flexfield structure ID, this function returns an array of
character strings with the following structure:

1. Name of the flexfield

2. Enabled flag

3. Frozen flag

4. Dynamic insert flag

5. Cross-validation allowed flag

6. Number of enabled segments defined

7. Number of enabled segments with value sets

8. "Y" if any segment has security, otherwise "N"

If no value is passed to the parameter, the function returns an array with null values.

Output
Displays important information about the flexfield, its structure, and the individual
flexfield segments it contains.

Example
declare
flexarray V2T;
begin

CheckKeyFlexfield(’GL#’, 50577, true);
CheckKeyFlexfield(’MSTK’, null, false);
flexarray := CheckKeyFlexfield(’GL#’, 12345, false);

end;

Procedure CheckProle

Usage
CheckProfile (’Profile Name’, UserID, ResponsibilityID, ApplicationID, ’Default
Value’, Indent Level);

Parameters
• Profile Name - The system name of the profile option being checked.

• User ID - The identifier of the Oracle Applications user for which the profile option is
to be checked.

• Responsibility ID - The identifier of the responsibility for which the profile option is
to be checked.

• Default Value - The value used as a default if the profile option is not set by the
user. The default is NULL.

• Indent Level - The number of tabs (0,1,2,3) that the output should be indented. The
default is 0.

A-12 Oracle Applications Supportability Guide

Returns
If called as a function, the return value will be one of the following:

• The value of the profile option, if set

• "DOESNOTEXIST" if the profile option does not exist

• "DISABLED" if the profile option has been end-dated

• Null if the profile option is not set

Output
If the profile has been set, this API outputs the profile’s current setting. If not set and a
default value exists, the API displays a warning which indicates that the default value
will be used and what that default value is. If the profile has not been set and no default
value is supplied, the API displays an error which indicates that the profile option
should be set. The output will be indented according to the Indent Level parameter
supplied. If the profile option does not exist or is disabled, then the API has no output.

Example
declare

profile_val fnd_profile_option_values.profile_option_value%typ
e;
begin

profile_val := CheckProfile(’PA_SELECTIVE_FLEX_SEG’,g_user_id,

g_resp_id, g_appl_id, null, 1);
CheckProfile(’PA_DEBUG_MODE’,g_user_id, g_resp_id, g_appl_id);
CheckProfile(’PA_DEBUG_MODE’,g_user_id, g_resp_id, g_appl_id,’

Y’,2);
end;

Function Column_Exists

Usage
Column_Exists (’Table Name’,’Column Name’);

Parameters
• Table Name - The name of the table that contains the column being checked.

• Column Name - The name of the column being checked.

Returns
Returns "Y" if the column exists in the table, "N" if it does not.

PL/SQL Helper Packages A-13

Example
declare

sqltxt varchar2(1000);
begin

if Column_Exists(’PA_IMPLEMENTATIONS_ALL’,’UTIL_SUM_FLAG’) = ’
Y’
then;

sqltxt := sqltxt||’ and i.util_sum_flag is not null’;
end if;

end;

Procedure Begin_Pre

Usage
Begin_Pre;

Output
Allows the following output (HTML output only) to be preformatted.

Example
begin

Begin_Pre;
end;

Procedure End_Pre

Usage
End_Pre;

Output
Closes the Begin_Pre procedure. For HTML output only.

begin
End_Pre;

end;

Procedure Display_SQL

Usage
Display_SQL (’SQL statement’, ’disp_lengths_tbl’, ’headers_tbl’, ’feedback’, ’max rows’);

Output
For text output.

Function Display_SQL

Usage
For HTML output:

A-14 Oracle Applications Supportability Guide

a_number := Display_SQL(’SQL Statement’,’Name for Header’,’Long
Flag’, ’Feedback’, ’Max Rows’);

For text output:

a_number := Display_SQL(’SQL Statement’, ’disp_lengths_tbl’, ’headers_tbl’, ’Feedback’,
’Max Rows’);

Parameters
• SQL Statement - A valid SQL select statement.

• Name for Header - A text string to serve as a heading for the output.

• Long Flag - "Y" or "N". If set to "N", then the API will not output any LONG
columns. The default is "Y".

• Feedback - "Y" or "N". Defines whether to indicate the number of rows selected
automatically in the output. The default is "Y".

• Max Rows - Limits the number of output rows to this number. A value of null or zero
indicates there can be an unlimited number of output rows. The default is NULL.

• disp_lengths_tbl - A table of type "lengths" indicating the display length for each of
the columns in the select. A value must be supplied for each column. If the value is
null, the length of the header will be used.

• headers_tbl - A table of type "headers" indicating the column heading for each of the
columns in the select. If an individual element of this parameter is null, or if this
parameter is not provided (it is not required), the heading will be the column alias
and the column name.

Returns
This function returns the number of rows selected. If there is an error, then the function
returns -1.

Output
Displays an HTML table.

Example
declare

num_rows number;
begin

num_rows := Display_SQL(’select * from ar_system_parameters_al
l’, ’AR Parameters’, ’Y’, ’N’,null);

num_rows := Display_SQL(’select * from pa_implementations_all’
, ’PA Implementation Options’);
end;

Function Run_SQL

Usage
For HTML-only APIs:

a_number := Run_SQL(’Heading’, ’SQL statement’);

a_number := Run_SQL(’Heading’, ’SQL statement’, ’Feedback’);

PL/SQL Helper Packages A-15

a_number := Run_SQL(’Heading’, ’SQL statement’, ’Max Rows’);

a_number := Run_SQL(’Heading’, ’SQL statement’, ’Feedback’, ’Max Rows’);

For text-only APIs:

a_number := Run_SQL(’Heading’, ’SQL statement’,’disp_lengths_tbl’, ’col_headers_tbl’);

a_number := Run_SQL(’Heading’, ’SQL statement’,’disp_lengths_tbl’,’col_headers_
tbl’,’Feedback’);

a_number := Run_SQL(’Heading’, ’SQL statement’,’disp_lengths_tbl’, ’col_headers_tbl’,
’Max Rows’);

a_number := Run_SQL(’Heading’, ’SQL statement’,’disp_lengths_tbl’, ’col_headers_tbl’,
’Feedback’, ’Max Rows’);

Parameters
• Heading - A text string to serve as a heading for the output.

• SQL Statement - Any valid SQL select statement.

• Feedback - "Y" or "N". Indicates whether to automatically print the number of rows
returned. The default is "Y".

• Max Rows - Limits the number of output rows to this number. A value of null or zero
indicates there can be an unlimited number of output rows. The default is NULL.

• disp_lengths_tbl - A table of type "lengths" indicating the display length for each of
the columns in the select. A value must be supplied for each column. If the value is
null, the length of the header will be used.

• headers_tbl - A table of type "headers" indicating the column heading for each of the
columns in the select. If an individual element of this parameter is null, or if this
parameter is not provided (it is not required), the heading will be the column alias
and the column name.

Returns
This function returns the number of rows selected. If there is an error, then the function
returns -1.

Output
Displays the SQL statement’s output as an HTML table.

Example
declare

num_rows number;
begin

num_rows := Run_SQL(’AR Parameters’, ’select * from ar_system_
parameters_all’);
end;

Function Run_SQL

Usage
For HTML-only APIs:

A-16 Oracle Applications Supportability Guide

Run_SQL(’Heading’, ’SQL statement’);

Run_SQL(’Heading’, ’SQL statement’, ’Feedback’);

Run_SQL(’Heading’, ’SQL statement’, ’Max Rows’);

Run_SQL(’Heading’, ’SQL statement’, ’Feedback’, ’Max Rows’);

For text-only APIs:

Run_SQL(’Heading’, ’SQL statement’, ’disp_lengths_tbl’, ’col_headers_tbl’);

Run_SQL(’Heading’, ’SQL statement’, ’disp_lengths_tbl’,’col_headers_tbl’,’feedback’);

Run_SQL(’Heading’, ’SQL statement’, ’disp_lengths_tbl’,’col_headers_tbl’,’max rows’);

Run_SQL(’Heading’, ’SQL statement’, ’disp_lengths_tbl’,’col_headers_tbl’,’feedback’,
’max rows’);

Parameters
• SQL statement - A valid SQL select statement.

• Heading - A text string to be a heading for the output.

• disp_lengths_tbl - A table of type "lengths" that indicates the display length for each
of the columns in the select. A value must be supplied for each column, even if that
value is null. If the value is null, the length of the header will be used.

• col_headers_tbl - A table of type "headers" that indicates the column heading for each
of the columns in the select. If an individual element of this parameter is null, or if
this parameter is not provided (it is not required), the heading will be the column
alias and the column name.

Output
Displays the SQL statement’s output as an HTML table.

Example
begin

Run_SQL(’AR Parameters’, ’select * from ar_system_parameters_a
ll’);
end;

Function Compare_Pkg_Version

Usage
Compare_Pkg_Version (’package_name’,’obj_type’,’obj_owner’, ’outversvar’, ’reference_
version’);

Compare_Pkg_Version (’package_name’,’obj_type’, ’outversvar’, ’reference_version’);

Parameters
• package_name - The name of the package whose version is being checked.

• obj_type - Either "BODY" or "SPEC", to determine which piece to check.

• obj_owner - The owner of the package being checked. If null or not supplied, the
default value is "APPS".

PL/SQL Helper Packages A-17

• outversvar - A text-out variable to hold the actual package version of the package
as returned from the database.

• reference_version - A string containing the version to which the package version
should be compared. Uses the format ###.### -- for example, 115.119 (rather than
11.5.119).

Returns
• "greater" if the version of the object is greater than the reference

• "less" if the version of the object is less than the reference

• "equal" if the version of the object is equal to the reference

• "null" if either the reference or database version is null

Output
Text only.

Example
declare
Comparison_Var varchar2(8);
Package_Version varchar2(10);
begin
Comparison_Var := Compare_Pkg_Version(’PA_UTILS2’,’BODY’,’APPS’, P
ackage_Version, ’115.13’);
Comparison_Var := Compare_Pkg_Version(’PA_UTILS2’,’BODY’, Package_
Version, ’115.13’);
end;

Procedure Show_Responsibilities

Usage
Show_Responsibilities (’username’);

Parameters
• username = a valid Oracle Applications username (case insensitive)

Output
Text only.

Example
begin

Show_Responsibilities(’jdoe’);
end;

Function Display_Table

Usage
Display_Table (’Table Name’, ’Heading’, ’Where Clause’, ’Order By’, ’Long Flag’);

A-18 Oracle Applications Supportability Guide

Parameters
• Table Name - A valid table or view.

• Heading - A text string to serve as the output heading.

• Where Clause - The where clause to apply to the table dump.

• Order By - The "order by" clause to apply to the table dump.

• Long Flag - "Y" or "N". If set to "N", then this will not output any LONG columns.

Output
Displays the output of the "select * from table" as an HTML table. This API only outputs
HTML.

Example
begin

Display_Table(’AR_SYSTEM_PARAMETERS_ALL’, ’AR Parameters’, ’Wh
ere Org_id != -3113’, ’order by org_id, set_of_books_id’, ’N’);
end;

Function Display_Table

Usage
a_number := Display_Table(’Table Name’, ’Heading’, ’Where Clause’, ’Order By’, ’Long
Flag’);

Parameters
• Table Name - A valid table or view.

• Heading - A text string to serve as the output heading.

• Where Clause - The where clause to apply to the table dump.

• Order By - The "order by" clause to apply to the table dump.

• Long Flag - "Y" or "N". If set to "N", then this will not output any LONG columns.

Returns
The number of rows displayed.

Output
Displays the output of the "select * from table" as an HTML table. This API only outputs
HTML.

Example
declare
num_rows number;

begin
num_rows := Display_Table(’AR_SYSTEM_PARAMETERS_ALL’, ’AR Para

meters’, ’Where Org_id <> -3113’ , ’order by org_id, set_of_books
_id’, ’N’);
end;

PL/SQL Helper Packages A-19

Function Get_DB_Apps_Version

Usage
a_varchar := Get_DB_Apps_Version;

Returns
Returns the version of applications found in fnd_product_groups. It also sets the variable
g_appl_version to "10.7","11.0", or "11.5" as appropriate.

Example
declare

apps_ver varchar2(20);
begin

apps_ver := Get_DB_Apps_Version;
end;

Procedure Show_Header

Usage
Show_Header (’Note Number’, ’Title’);

Parameters
• Note Number - A valid OracleMetaLink note number.

• Title - A text string to display next to the note link.

Output
Displays standard header information.

Example
begin

Show_Header(’139684.1’, ’Oracle Applications Current Patchsets
Comparison to applptch.txt’);
end;

Procedure Show_Footer

Usage
Procedure Show_Footer (’Script Name’,’Header’);

Output
Displays a standard footer.

Example
begin

Show_Footer(’AR Setup Script’, ’$Header: ARTrxInfo.sql 1.0 01/1
2/11 12:33:24 support $’;
end;

A-20 Oracle Applications Supportability Guide

Procedure Show_Link

Usage
Procedure Show_Link (’Note Number’);

Output
Displays a link to an OracleMetaLink note.

Example
begin

Show_Link(’139684.1’);
end;

Procedure Show_Link

Usage
Show_Link(’URL’, ’Name’);

Output
Displays a link to a URL using the name parameter value.

Example
begin
Show_Link(’http://metalink.us.oracle.com’, ’OracleMetaLink’);
end;

Procedure Send_Email

Usage
Send_Email (’Sender’, ’Recipient’, ’Subject’, ’Message’, ’SMTP Host’);

Output
Sends an e-mail message. There is no screen output.

Example
begin
Send_Email (’sender@company.com’,’recipient@oracle.com’,’This is a
subject’, ’This is a message body’,’gmsmtp01.oraclecorp.com’);
end;

Function Get_Package_Version

Usage
a_varchar := Get_Package_Version (’Object Type’, ’Schema’, ’Package Name’);

Returns
Returns the version of the package or specification.

PL/SQL Helper Packages A-21

Example
declare

spec_ver varchar2(20);
body_ver varchar2(20);

begin
spec_ver := Get_Package_Version(’PACKAGE’,’APPS’,’ARH_ADDR_PKG

’);
body_ver := Get_Package_Version(’PACKAGE BODY’,’APPS’,’ARH_ADD

R_PKG’);
end;

Function Get_Package_Spec

Usage
a_varchar := Get_Package_Spec(’Package Name’);

Returns
Returns the version of the package specification in the APPS schema.

Example
declare

spec_ver varchar2(20);
begin

spec_ver := Get_Package_Spec(’ARH_ADDR_PKG’);
end;

Function Get_Package_Body

Usage
a_varchar := Get_Package_Body(’Package Name’);

Returns
Returns the version of the package body in the APPS schema.

Example
declare

body_ver varchar2(20);
begin

body_ver := Get_Package_Body(’ARH_ADDR_PKG’);
end;

Procedure Display_Proles

Usage
Display_Profiles (application ID, ’profile short name’);

Output
Displays all profile settings for the application or profile in an HTML table.

A-22 Oracle Applications Supportability Guide

Example
begin

Display_Profiles(222,null);
Display_Profiles(null, ’AR_ALLOW_OVERAPPLICATION_IN_LOCKBOX’);

end;

Function Get_Prole_Option

Usage
a_varchar := Get_Profile_Option(’Short Name’);

Parameter
• Short Name - The short name of the profile option.

Returns
Returns the value of the profile option, based on the user. If Set_Client has not been run
successfully, then it will return the site-level profile option value.

Example
declare

prof_value varchar2(150);
begin

prof_value := Get_Profile_Option(’AR_ALLOW_OVERAPPLICATION_IN_
LOCKBOX’)
end;

Procedure Set_Org

Usage
Set_Org (Org_ID);

Parameters
• Org_ID - The identifier of the organization to be set.

Output
None

Example
begin

Set_Org(204);
end;

Procedure Set_Client

Usage
Set_Client(UserName, Responsibility_ID);

Set_Client(UserName, Responsibility_ID, Application_ID);

PL/SQL Helper Packages A-23

Set_Client(UserName, Responsibility_ID, Application_ID, SecurityGrp_ID);

This procedure validates the UserName, Responsibility_ID, and Application_ID
parameters. If valid, it initializes the session, which results in the operating
unit being set for the session as well. It also sets the global variables
g_user_id, g_resp_id, g_appl_id, and g_org_id, which can then be used throughout
the script.

Parameters
• UserName - The name of the Oracle Applications user.

• Responsibility_ID - A valid responsibility ID.

• Application_ID - A valid application ID. If no value is provided, an attempt will be
made to obtain it from the responsibility ID.

• SecurityGrp_ID - A valid security group ID.

Example
begin

Set_Client(’JOEUSER’,50719, 222);
end;

Procedure Get_DB_Patch_List

Usage
a_string := Get_DB_Patch_List(’Heading’, ’Short Name’, ’Bug Number’, ’Start Date’);

Parameters
• Heading - A text heading for the TABLE or TEXT outputs.

• Short Name - The short name of the Oracle Applications product.

• Bug Number - The bug number identifier.

• Start Date - The earliest applicable bug creation date.

Output
Displays an HTML table of patches that have been applied for the application since
the start date.

Example
begin

Get_DB_Patch_List(null, ’AD’,’%’, ’03-03-2002’, ’SILENT’);
end;

Function Get_RDBMS_Header

Usage
Get_RDBMS_Header;

Returns
The version of the database from v$version.

A-24 Oracle Applications Supportability Guide

Example
declare
RDBMS_Ver := v$version.banner%type;
begin
RDBMS_Ver := Get_RDBMS_Header;
end;

Procedure Show_Invalids

Usage
Show_Invalids(’Start String’, ’Include Errors’, ’Heading’);

Parameters
• Start String - A string indicating the beginning of object names to be included. The

underscore character (_) will be escaped in this string so that it does not act as a wild
card character. For example, "PA_" will not match "PAY", even though it normally
would in SQL*Plus.

• Include Errors - "Y" or "N". Indicates whether to search on and report the errors from
ALL_ERRORS for each of the invalid objects found. The default is "N".

• Heading - An optional heading for the table. If null, the heading will be "Invalid
Objects (Starting with ’XXX’)" where XXX is the Start String parameter.

Output
This procedure outputs a list of invalid objects whose names starts with the Start
String. For packages, procedures, and functions, file versions will be included. When
requested, error messages associated with the object will be reported.

Example
Show_Invalids(’GL_’);

PL/SQL Helper Packages A-25

B
SQL Trace Options

SQL Trace Options
Oracle E–Business Suite Forms–based applications allow you to set up SQL Trace
under the Help > Diagnostics menu. The trace options allow you to have server and
background processes write information to associated trace files. When a process
detects an internal error, it writes information about the error to its trace file. For more
information on trace files, see the Oracle database documentation.

Note: Enabling SQL Trace can have a severe performance impact. For
more information, see the Oracle database documentation.

The following options are available:

• No Trace – turns trace off.

• Regular Trace – generates a regular SQL trace by performing the following statement:

ALTER SESSION SET SQL_TRACE = TRUE;

• Trace with Binds – writes bind variable values in the SQL trace file

• Trace with Waits – writes wait events in the SQL trace file

• Trace with Binds and Waits – writes both bind variable values and wait events in
the SQL trace file

• Unlimited Trace File Size – allows an unlimited size for the trace file

Once SQL Trace is enabled using the Help >Diagnostics menu, the system enables trace
for any form launched from the form in which trace was enabled. If trace is enabled
while the Navigator is in focus, any subsequent form launched has trace enabled. When
any subsequent forms are launched, the menu option indicates that trace is enabled.

A message is displayed at form startup indicating that trace is enabled.

SQL Trace Options B-1

Index

A
Advanced Mode, 1-2
AFLOG_ECHO, 6-8
AFLOG_ENABLED, 6-4
AFLOG_FILENAME, 6-7
AFLOG_LEVEL, 6-5
AFLOG_MODULE, 6-7
Application Super User, 1-3

B
Basic Mode, 1-2

C
Concurrent programs
logging, 9-16

Configuration
logging, 8-2

CRM System Administrator Console, 1-4
CRM System Administrator console, 5-3

D
Database failover, 4-1
Debugging, 8-1
Declarative diagnostics, 2-35
logical operators, 2-39
structure, 2-35
sub-tests, 2-35

Diagnostic Roles, 1-3
Diagnostics
batch mode, 5-5
CRM System Administrator console
features, 5-3

database failover, 4-1
declarative, 2-35
integrating LOVs, 2-39, 2-39
Java tests, 2-2
execution, 2-4
pipelining dependencies, 2-19
report formatting library, 2-7
reporting, 2-4
requirements, 2-2
runTest, 2-46
sample code, 2-5

test properties, 2-2
user context, 2-46

launching, 5-1, 5-5
command-line console, 5-5
CRM System Administrator console, 5-3
Oracle Applications Manager (OAM), 5-3
standalone HTML , 5-1

LogViewer, 4-2
PL/SQL tests, 2-23
PL/SQL utility packages, 2-32
sample package, 2-32

result logs, 4-1
purging, 4-2

result reporting, 4-1
security, 3-1
administration, 3-3
concepts, 3-1
data security, 3-3
diagnostic roles, 3-1
roles, 3-4
test group sensitivity, 3-1
test groups, 3-3

SQL Trace options, B-1
standalone HTML
access, 5-1
bookmarks, 5-3
features, 5-2

supported features, 1-3
terminology, 1-2
test categories, 2-1
test development, 2-1
user context, 2-46, 3-4
user interfaces, 1-4

E
End User, 1-3
Excel reporting, 4-3

J
Java diagnostic tests, 2-2
execution, 2-4
Pipelining dependencies, 2-19
report formatting library, 2-7
reporting, 2-4

Index-1

requirements, 2-2
runTest, 2-46
sample code, 2-5
test properties, 2-2
user context, 2-46

JTF_DIAGNOSTIC_ADAPTUTIL, A-1
JTF_DIAGNOSTIC_COREAPI, A-5

L
Logging
APIs, 9-1
concurrent programs
output file, 9-17
request log, 9-17

configuration, 8-2
C environment variables, 7-2
database profile options, 7-2
Java system properties, 7-1
middle-tier properties, 7-1

configuration parameters, 6-3, 6-3
disabling, 8-3
features, 6-1
from Java, 9-10, 9-11
AppsLog, 9-10
CRM Technology Foundation APIs, 9-12

from PL/SQL
FND_LOG, 9-14
sample code, 9-14

guidelines
for developers, 9-1
for system administrators, 8-1

guidelines for developers
APIs, 9-1
C, 9-15
concurrent programs, 9-16, 9-16
general tips, 9-10
handling errors, 9-1
Message Dictionary, 9-10
module name examples, 9-5
module name standards, 9-5
module source, 9-3
performance standards, 9-2
PL/SQL, 9-13
severity levels, 9-6
system alerts, 9-17

in high volume scenarios, 8-2
messages
attachments, 9-8
purging, 8-3, 8-3, 8-3, 8-3, 8-3
viewing, 8-4

severity levels
ERROR, 9-6
EXCEPTION, 9-7
PROCEDURE, 9-7
STATEMENT, 9-8
UNEXPECTED, 9-6
Unexpected, 9-

startup behavior, 7-4
target audience, 6-1
terminology, 6-2

Logging Framework
overview, 6-1

Logging to Screen, 7-3, 8-1
with CRM Technology Foundation, 7-3
with Oracle Applications Framework, 7-3

Loggingseverity levelsUnexpectedLogging
severity levels
EVENT, 9-7

LOVs
default, 2-44
implementing, 2-39
sample code, 2-41

in diagnostic test cases, 2-43
integrating, 2-39

M
Message Dictionary, 9-10
Microsoft Excel reporting, 4-3

O
Oracle Applications Framework support, 2-45
sample code, 2-46

Oracle Applications Manager, 1-4
Oracle Applications Manager (OAM), 5-3, 5-4
Diagnostic test details, 5-4
Diagnostics, 5-3
Diagnostics summary, 5-3, 5-4
Support Cart, 5-4

P
PL/SQL diagnostic tests, 2-23
PL/SQL utility packages, 2-32
sample package, 2-32

PL/SQL helper packages, A-1
Prerequisites, 1-2
Purge Debug Log and System Alerts concurrent
program, 8-3

R
Report formatting library, 2-7
Result logs
diagnostics, 4-1
purging, 4-2
scheduling routine purging, 4-2

Run Diagnostic Tests concurrent program, 5-5
runTest, 2-46

S
Security
diagnostics, 3-1
administration, 3-3

Index-2

concepts, 3-1
Specific user errors, 8-2
SQL Trace options, B-1
Super User, 1-3
System Alerts
defining, 9-19
logging

guidelines for developers, 9-17
System configuration, 8-1

T
Terminology
diagnostics, 1-2

Index-3

	Oracle Applications Supportability Guide
	Preface
	 Oracle Diagnostics Overview
	Introduction
	Target Audiences
	Terminology
	Architecture
	Supported Features
	User Interfaces

	 Developing Diagnostic Tests
	Test Development Overview
	Diagnostic Test Categories
	Developing Java Diagnostic Tests
	Preliminary Requirements for Java Tests
	Java Test Properties
	Java Test Execution
	Java Test Reporting
	Java Diagnostic Test Sample Code
	Report Formatting Library

	Pipelining Dependencies
	Pipelining PL/SQL Scripts
	Seamless Pipelining between Diagnostics Java and PL/SQL Scripts
	Developing PL/SQL Test Cases
	PL/SQL Package Test Case APIs
	PL/SQL Utility Packages
	PL/SQL Diagnostic Test Sample Code

	Declarative Diagnostics
	Structure of a Declarative Diagnostic Test
	Sub-test Types, Metadata Needed, and Use Case Examples
	Logical Operators for Comparison

	Integrating LOVs With Diagnostics
	Implementing an LOV
	LOV Provider Sample Code
	Incorporating LOVs in Diagnostic Test Cases
	Default LOVs
	PL/SQL LOVs

	Oracle Applications Framework Support
	Sample Code

	Instantiation of Diagnostic User Context Within Diagnostic Test

	 Diagnostic Security
	Overview
	Key Concepts
	Test Group Sensitivity
	Diagnostic Roles
	Underlying Security Infrastructure

	Security Administration
	Securing Test Groups
	Assigning Diagnostic Roles to Responsibilities

	Session Creation / Switching User Context in Test Cases

	 Diagnostics Result Reporting
	Overview
	Database Failover
	Accessing Result Logs
	Purging Result Logs
	Scheduling Routine Purging

	Historical Logs: LogViewer
	 Microsoft Excel Reporting for Diagnostics PL/SQL Test Results

	 Launching Oracle Diagnostics
	Overview
	Standalone Diagnostics
	Access
	Features
	Bookmarking Pages in the Diagnostics UI

	CRM System Administrator Console
	Features

	Oracle Applications Manager
	Finding Oracle Diagnostics in OAM
	Diagnostics Test Summary
	Refreshing the Summary Data
	Diagnostic Test Details
	Using the Support Cart
	Launching Oracle Diagnostics from OAM

	Command-line Console
	Scheduling Batch Diagnostics

	 Logging Framework Overview
	Overview
	Target Audience
	Key Features
	Terminology
	Logging Configuration Parameters
	Overview
	AFLOG_ENABLED
	AFLOG_LEVEL
	AFLOG_MODULE
	AFLOG_FILENAME
	AFLOG_ECHO

	 How to Configure Logging
	Using Middle-tier Properties to Configure Logging
	Using Java
	Using C

	Using Database Profile Options to Configure Logging
	Using Logging to Screen
	Enabling Logging to Screen in Oracle Application Framework Pages
	Enabling Logging to Screen in CRM Technology Foundation Pages

	Startup Behavior

	 Logging Guidelines for System Administrators
	Overview
	Recommended Default Site-Level Settings
	Recommended Settings for Debugging
	Using Logging to Screen
	Pinpointing an Error to a Specific User
	For High Volumes

	Updating Configuration Properties
	How to Completely Disable Logging
	Purging Log Messages
	Using a Concurrent Program
	Using Oracle Applications Manager
	Using the Oracle CRM System Administrator Console
	Using PL/SQL

	Viewing Log Messages

	 Logging Guidelines for Developers
	Overview
	APIs
	Handling Errors
	Performance Standards
	Module Source
	Module Name Standards
	Module Name Examples

	Severities
	UNEXPECTED
	ERROR
	EXCEPTION
	EVENT
	PROCEDURE
	STATEMENT

	Large Text and Binary Message Attachments
	Automatic Logging and Alerting for Seeded Message Dictionary Mes
	General Logging Tips
	How to Log from Java
	Core AppsLog
	OAPageContext and OADBTransaction APIs
	CRM Technology Foundation APIs

	How to Log from PL/SQL
	API Description
	Example

	How to Log from C
	How to Log in Concurrent Programs
	Debug and Error Logging
	Request Log
	Output File

	How to Raise System Alerts
	Guidelines for Defining System Alerts

	PL/SQL Helper Packages
	Overview
	Package JTF_DIAGNOSTIC_ADAPTUTIL
	Package JTF_DIAGNOSTIC_COREAPI

	SQL Trace Options
	SQL Trace Options

	Index

